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Chapter 1: Introduction

1.1 Anatomy and Function of the Spine

The human spine is a mechanical structure consisting of five major regions: the
cervical region (7 mobile vertebrae) which stabilizes the base of the skull to the spine,
the relatively stiff thoracic region (12 mobile vertebrae), the strong and flexible lumbar
region (5 mobile vertebrae), the sacral region (5 fused vertebrae) acting as the center
of the pelvis, and the coccygeal region (4 fused vertebrae) or tailbone [Thompson and
Netter 2010]. The neutral spine has a natural lordotic curvature in the cervical and
lumbar regions and a natural kyphotic curvature in the thoracic and sacral regions
(Figure 1). The functions of the spine include protecting the nerve roots and spinal cord,;
supporting body weight; providing attachment points for the ribs, shoulder girdle, and
pelvic bones; and transmitting forces to allow postural stability and physical

movement.

1.1.1 Vertebral Bodies

Vertebral bodies are the bony structures of the spinal column. A typical vertebral
body consists of an anterior cylindrical body and posterior arch (Figure 2). The anterior
body is the main axial load-bearing structure of the spine. It is composed primarily of
cancellous bone encapsulated by an outer shell of cortical bone as well as superior and
inferior end plates of compacted cancellous bone, which themselves are covered with
thin layers of cartilage and act as the attachment sites to the intervertebral discs. The
width and depth of vertebral bodies increase from the cervical to the lumbar regions

due to increasing axial loads [Miele et al. 2012]. Similarly, compression strength
1
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increases from the cervical to lumbar regions. However, the strength of vertebral bodies
decrease with degenerative disease, injury, and age—especially beyond 40 years

[Panjabi et al. 1980].

Cervical

Thoracic

Lumbar

Sacrum

Coccyx

Figure 1: Lateral View Human Spinal Column. [adapted from Gray 1918]

Facet joint (adjacent Spinous process

articular processes)

Superior articular process

Lamina

Transverse process
Transverse process

Spinous process

Pedicle

Vertebral body

Inferior articular process

Spinal canal

Figure 2: Vertebral Body and Nerve Structures.
Lateral View (left) and Superior View (right). [adapted from Gray 1918]
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The vertebral arch begins bilaterally with pedicles which form junctions with:
the laterally protruding transverse processes providing attachment sites to muscles and
ligaments, the superior and inferior articular processes forming facet joints between
neighboring vertebrae, the laminae extending around the spinal canal, and the
posteriorly protruding spinous process providing additional attachment sites to muscles
and ligaments [Miele et al. 2012]. The delicate spinal cord is enclosed within the rigid
spinal canal, formed by the posterior face of the vertebral body and the vertebral arch,
connected by facet joints end-to-end in space along the entire spinal column. Nerve
roots above or below each vertebral level branch off from the spinal cord through
spaces, formed by articulating facet joints, called neuroforamen [White and Panjabi
1990]. These spaces are clinically important because a reduction in diameter of the
spinal canal and/or neuroforamen, most commonly due to injury or degenerative

changes, is a direct source of pain [Moore et al. 2011].

1.1.2 Intervertebral Disc

The intervertebral disc sits between two vertebral bodies and is composed of an
outer annulus fibrosus, which is continuous with the cartilaginous vertebral body
endplates, and inner nucleus pulposus (Figure 3). Although these regions are strictly
defined in the representative image, it is important to note that these strict boundaries
do not exist anatomically [Humzah and Soames 1988]. The disc height increases from
the cervical to the lumbar region from about 3mm to 9mm, again due to increasing

axial loads [Zatsiorsky 1998].
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cartilage end plate

Figure 3: Three-dimensional Representation of Intervertebral Disc. [Humzah and Soames 1988]
Reprinted with permission from John Wiley and Sons 2005.

The nucleus pulposus (NP) is located posterocentrally in the disc and may take up 30-
50% of the disc’s cross-sectional area. It is a soft, pressurized gelatinous region
composed of poly-anionic proteoglycans, loose type Il collagen fibrils, mineral salts,
water, and cellular elements remaining from the primitive notochord [Martin et al.
2002]. The type Il collagen fibers provide tensile strength to the NP [Cassinelli and
Kang 2000]. The proteoglycans contain many glycosaminoglycan attachments which
are highly hydrophilic, pulling water into the inner region of the intervertebral disc via
osmosis. Water pressurizes the region by forming hydrogen bonds with the
proteoglycans. This allows uniform force dispersion when the intervertebral disc
transfers loads between vertebral bodies of the spinal column [Humzah and Soames
1988, Cassinelli and Kang 2000]. The water content in the NP may decrease due to
short-term factors such as physical activity or long-term factors such as aging and
disease. This leads to loss of spinal movement and therefore function [Cassinelli and

Kang 2000].
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The annulus fibrosus (AF) is designed for structural support with concentric
layers of collagen fiber bundles. The orientation of the fibers alternates from layer to
layer, with fibers oriented at an angle of approximately £ 30° with respect to the
horizontal plane and 120° with respect to each other in adjacent layers. This
arrangement results in equally distributed forces within the disc, which provides
resistance to axial load, resistance to shearing and rotational forces, and tensile strength
[Humzah and Soames 1988]. Fibers comprising the outer portion of the AF are highly
organized and densely packed type I collagen fibers. Fibers comprising the inner
portion of the AF are more loosely packed type | and type 1l collagen fibers with an
increasing percentage of proteoglycans relative to the outer portion, giving way to a
transition zone between the AF and NP [Whatley and Wen 2012].

All fibers of the AF except the outermost attach to the cartilaginous endplates
of the vertebral bodies. The outermost layer, called Sharpey Fibers, attach directly to
the vertebral bodies [Jones and Boyde 1974]. Because the intervertebral discs are
avascular structures, the cartilage layers provide oxygen and nutrients for diffusion into
the discs [Humzah and Soames 1988]. However, reduced porosity due to aging,
degeneration, or injury, may lead to low permeability and reduced nutrient exchange

[Wu et al. 2013].

1.1.3 Ligaments

Vertebral bodies and intervertebral discs are held together by groups of
ligaments (Figure 4), including: the intertransverse ligaments (ITL) and interspinous

ligaments (ISL), which attach to the transverse and spinous processes, respectively, or
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adjacent vertebrae; the supraspinous ligament (SSL), which extends the length of the
spinal column posterior to the ISL and attaches firmly to the tip of each spinous process;
the capsular ligament (CL) surrounding each facet joint; the ligamentum flavum (LF),
which originates bilaterally on the anteriorinferior laminar surface of each superior
vertebral body and inserts on the posterosuperior laminar surface of each inferior
vertebral body; the anterior longitudinal ligament (ALL), which extends the length of
the spinal column anterior to the vertebral bodies; and the posterior longitudinal
ligament (PLL), which extends the length of the spinal column posterior to the vertebral
bodies. Ligaments are composed of unidirectional type | collagen fibers, providing
strength and resistance, and elastin fibers, providing flexibility. Ligaments provide
passive stabilization to the spinal column by both facilitating and limiting motion

[Miele et al. 2012].

,LIGAMENTUM FLAVUM

INTERTRANSVERSE.
LIGAMENT

FACET
_-CAPSULAR
POSTERIOR—__ LIGAMENT
LONGITUDINAL
LIGAMENT

INTERSPINOUS
LIGAMENT

~SUPRASPINOUS
R e LIGAMENT
ANTERIOR—  JNe
LONGITUDINAL Jr K
LIGAMENT :

Figure 4: Ligaments of the Spine. [Panjabi et al. 1980]
Reprinted with permission from Wolters Kluwer Health, Inc. 1980
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1.2 Spine Kinematics and Biomechanics

A motion segment unit (MSU) is the basic unit of study of the spine and consists
of two adjacent vertebrae and their interposed intervertebral disc [Zatsiorsky 1998].
Each MSU has six degrees of freedom (Figure 5): translation and rotation along three

orthogonal axes.

Y
A el
I Q A ROTATION

Figure 5: Three-dimensional MSU Coordinate System.
Kinematic range about three principal orthogonal axes. [Panjabi 1988]
Reprinted with permission from Wolters Kluwer Health, Inc. 1988.

1.2.1 Vertebral Range of Motion

There are two types of joints in the spinal column: intervertebral joints
(synarthroses) between vertebral bodies and adjacent intervertebral discs and facet
joints (synovial joints) between the articular processes of neighboring vertebrae. These

joints allow the spine as a whole to produce three movements: flexion/extension, lateral
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bending, and axial rotation [Zatsiorsky 1998]. Movement at the intervertebral and facet
joints of the same MSU is coupled. The magnitude and direction of motion available
at each MSU depends on the size of vertebral bodies and interposed discs, the
orientation of facet joint surfaces, the tensile and elastic properties of spinal ligaments,
and surrounding musculature [Zatsiorsky 1998, Miele et al. 2012].

Two parameters often used to discuss spinal kinematics and stability (or
instability) are range of motion and neutral zone of motion. Range of Motion (ROM)
is defined the angle through which a joint moves from anatomical position to the
extreme limit of segment motion in a particular direction. ROM is used to diagnose
spinal pathologies and is the most commonly reported kinematic characteristic of in
vitro testing protocols [Panjabi et al. 1994, Crawford et al. 1995, Goel et al. 1995,
Spenciner et al. 2006]. Vertebral bodies are considered rigid bodies, and the kinematic
characteristics of MSU’s are measured as the superior body with respect to the inferior
body [Zatsiorsky 1998].

Stability of the spinal column is maintained by interdependent systems of
vertebrae separated by intervertebral discs and articulating joints, joined together by
passively restraining ligaments and controlled by neuromuscular activation. When a
force is applied to an MSU, the unit will displace from a neutral position to a position
where a significant resistance is encountered [Miele et al. 2012]. The neutral zone (NZ)
is defined as this initial region of intervertebral motion around the neutral position
where little resistance is given by the spinal column [Panjabi 1992]. After a maximum
strain capacity of the NZ is reached, movement beyond that point causes the tissue

deformity according to Hooke’s law—a principle of physics stating that the force
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required to extend or compress a spring by some distance is proportional to that
distance—until any further movement results in permanent deformation or failure
[Miele et al. 2012]. This region is called the elastic zone (EZ). Thus ROM involves the
sum total displacement of the neutral and elastic zones (Figure 6).

The neutral zone appears to correlate with spinal stability—the interdependent
spinal stability system adjusts to contain MSU movement within physiological
thresholds of the neutral zone. NZ increases with spinal instability due to injury, muscle
weakness, or degenerative changes and decreases with increasing muscle activation as
well as the implementation of spinal fusion devices. Thus NZ calculations are used to

measure clinical instability [Panjabi 1992, Wilke et al. 1998].

DEFOAMATION

RN — — i —— ——

ELASTH: ZOME
(EZ)

AANGE OF MOTION
________ . (RO
NEUTRAL ZONE
(HEZ)
O 1 b

LCwaD

Figure 6: Load-Displacement Curve lllustrating Spinal Motion. The load-deformation curve of a
soft tissue or a body joint is divided into two parts: neutral zone (NZ), the region of high flexibility,
and the elastic zone (EZ), the region of high stiffness. The sum total of NZ and EZ is ROM.
[Panjabi 1992] Reprinted with permission from Wolters Kluwer Health, Inc. 1992

9
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1.2.2 Intervertebral Disc Mechanics

The intervertebral discs are essential to force transmission along the spinal
column [Whatley and Wen 2012]. When a compressive force is applied to an MSU,
the disc’s NP pressurizes, expelling water as proteoglycan-induced osmotic pressure is
overcome by the hydrostatic pressure created by disc deformation. The expelled water
enters spaces between the fibrous lamellar layers of the AF and passes through the
cartilaginous endplates of adjacent vertebral bodies. Conversely, when a compressive
force is removed, the osmotic pressure of the NP is restored and the intervertebral disc
returns to its original height [Johannessen et al. 2004, O’Connell et al. 2011].

Thus intradiscal NP pressures allows intervertebral discs to convert
compressive axial loads into dispersed radial loads acting on the AF, allowing the discs
to act as shock absorbers (Figure 7A). Because intervertebral discs contain both the
pressurized NP’s and tensile resistant AF’s, they are able to maintain stability during
normal flexion/extension, lateral bending, and torsional movements [Panjabi 1980,
Humzah and Soames 1988]. Specifically, during eccentrically-placed loads, the AF
fibers are compressed and bulge on the side of the applied force and contract in tension
on the opposite side, and the NP is displaced to the opposite side of the applied force
(Figure 7B-E). In these ways the viscoelastic properties of the intervertebral discs
distribute stress along the spinal column to maintain stable posture and facilitate
movement. Factors such as age, injury, nutritional imbalances, genetic conditions, and
degenerative diseases compromise the spine’s natural load-bearing mechanism and

stability [Panjabi 1980, Adams and Roughley 2006].

10
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Sitting/standing upright:

N axial compression

(@@=
-r

Bending Backward:
extension

Bending forward:
flexion

Twisting:
axial rotation

Bending sideways:
lateral bending

Figure 7: Pressure Dispersion and Movements of Intervertebral Disc.
(A) Axial Compression causes radial expansion of NP and AF. (B) Flexion causes posterior

displacement of NP, anterior bulging of compressed AF fibers, and posterior tension of AF
fibers. (C) Extension causes anterior displacement of NP, posterior bulging of compressed AF
fibers, and anterior tension of AF fibers. (D) Lateral Bending causes ipsilateral displacement

of NP, ipsilateral bulging of compressed AF fibers, and contralateral tension of AF fibers.

(E) Axial Rotation causes strain on NP and AF fibers.
[adapted from Palastanga and Soames 2012]

1.3 Natural Loading Behavior of the Lumbar Spine

The lumbar spine naturally resists forces caused by body weight, torso and pelvic
muscular activity, and additional external loads [Moore et al. 2011]. The average
maximum flexion of a lumbar MSU in vivo is 15° [Adams and Hutton 1982], suggesting
that at such large degrees of flexion, the lumbar spine provides substantial bending
resistance. However, the average maximum extension and lateral bending of a lumbar

MSU rarely exceeds 5° in vivo [Pearcy et al. 1984, Pearcy and Tibrewal 1984].

11
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Similarly, the maximal axial rotation of a lumbar MSU has been reported to be 6° in
vivo [Pearcy and Tibrewal 1984]. When bending or torsional moment loads on the
lumbar spine do occur, they occur in conjunction with compressive loads, presumably
due to body weight [Miller et al. 1986].

A simplified model of physiologic body loading on the lumbar spine is shown in
Figure 8. The weight of the torso exhibits a force on the spine through the center of
mass and induces a different bending moment at each individual vertebral level. The
bending moment about a point is the product of the force and perpendicular distance to
that point of rotation [Mow and Huiskes 2005]. The body weight force vector (Faw),
thought to lie along the line between the auricle of the ear to the center of the femoral
head, is offset a distance (d) from the center of the MSU disc—this distance varies
between MSU’s due to the natural curvature of the spine. Fgw has two component
forces: the shear force (Fs) acting along the plane of the disc and the axial load (Fa)
acting along the plane perpendicular to that of the disc. The angle that the superior
endplate of the MSU’s upper vertebral body makes with the horizontal axis corresponds
to the angle (B) between the vertical Fws and axial Fa. Thus the component forces can
be calculated as:

Fy = Fgy X cos@
F, = Fgy X sin@

As the angle 6 increases, more of the body weight is transferred to the spine as
shear force (Fs), thought to be resisted by the facet joint complexes and ligaments
[Zatsiorsky 1998]. As the angle 6 decreases, more body weight is transferred to the
spine as axial force (Fa), absorbed and distributed by the intervertebral disc. The
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bending moment (M) is resisted by the disc, ligaments, and facet joints. In fact, more
resistance to the peak bending moment of extension is provided by the facet joints
themselves than that of flexion [Dickey and Gillespie 2003], indicating that the
posterior ligaments and intervertebral disc are heavily recruited for resistance in
flexion.

The lumbar spine in particular must frequently resist especially large loads in axial
compression—more than 1000 N may be imposed on the lumbar vertebrae by daily
activities [Schultz 1987]. Although routine daily activities seldom impose large loads
on the lumbar spine in bending or torsion movement, strenuous situations may occur,
such as large trunk movements during traumatic events or when trunk muscle
contractions are recruited inappropriately in unfamiliar and large weight bearing tasks
[Miller et al. 1986]. Thus the loading scheme of the lumbar spine is further complicated
by the location of the center of mass of an individual’s upper torso, the anatomical
curvature of an individual’s spinal column, muscle activity, out-of-plane loads and
moments, and the presence of disease or trauma [Zufelt 2008]. Thus clinical stability

and load-sharing of the spine may be greatly affected by various factors.
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Figure 8: Simplified Lumbar Loading Mechanics. The action of the body weight force vector at the
L5-S1 MSU induces a bending moment (M) and compressive force (Fsw), with two components: shear
force (Fs) along the disc plane and axial force (Fa) perpendicular to the disc plane.

[adapted from Gray 1918]

1.3.1 Effects of Load History on Spinal Behavior

Loading within the physiological norms of the diurnal cycle, between 0.2 MPa
at rest in a supine position and 0.6 MPa in an upright posture while performing a load
bearing e.g. weight lifting activities of daily living, maintains the cellular and overall
tissue health of the intervertebral disc while exchanging as much as 25% of the disc’s
water content within one 24-hour cycle [Sivan et al. 2006]. However, sustained
compressive loads and/or repeated large compressive load cycling has been shown to
generate increased AF stress concentrations and reduced NP pressures as well as
reduced heights in lumbar intervertebral discs, which may lead to alterations in cellular

metabolism, structural disruption, and therefore back pain [Adams et al. 1996].
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Loading events are therefore known to influence the internal mechanics of
intervertebral discs. Hydration plays a significant role of intervertebral disc
mechanobiology with loading. Water distribution within the NP acts to resist
compressive forces while the collagen fibers forming the AF acts to resist tensile forces
from the NP’s subsequent radial expansion thereby preventing NP bulging or herniation
[Humzah and Soames 1988]. Multiple studies using human, ovine, and murine models
have investigated the changes in intervertebral disc mechanobiology with varied axial
compressive load histories and recovery periods. Higher loads cause greater water loss,
leading to reduced disc height, reduced intradiscal pressure, and load transference from
the NP to the AF creating shear stress peaks throughout the AF [Goodley 2014]. In fact,
reduced intradiscal pressure under a constant load results in an imbalance between the
transverse and axial stress components [Hwang et al. 2011]. After “safe load” recovery
periods which promote maintenance of intervertebral tissue metabolism, discs
exhibited full returns of intradiscal pressures, disc heights, and stress-relaxation
properties [Adams and Hutton 1983, Adams et al. 1996, Argoubi and Shirazi-Adl 1996,
Johannessen et al. 2004, Stokes and latridis 2004, Walsh and Lotz 2004, Sivan et al.
2006, van der Veen et al. 2006, Chan et al. 2011, Hwang et al. 2011, O’Connell et al.
2011, Walter et al. 2011].

During sustained loading of the spine, a progressive deformation of the spinal
column, called “creep” occurs [Twomey and Taylor 1982]. The magnitude of loading
forces as well as the loading direction of compressive or creep loading has been varied
across all studies, making comparisons difficult. Compressive axial loads have been

reported to increase simultaneously-measured stiffness and decrease ROM in
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flexion/extension, lateral bending, and axial rotation [Panjabi et al. 1977, Adams and
Dolan 1991, Janevic et al. 1991, Cripton et al. 2000, Gardner-Morse and Stokes 2003,
Shirazi-Adl 2004]. These larger moment stiffnesses have been observed as generally
more flat and linear load-displacement curves [Miller et al. 1986, Edwards et al. 1987,
Janevic et al. 1991, Patwardhan et al. 2003]. On the other hand, prolonged compressive
loads applied in the direction of moment testing have been reported to decease stiffness
and increase ROM in flexion/extension, lateral bending, and axial rotation [Goel et al.
1988, Adams and Dolan 1991, Little and Khalsa 2005, Zhao et al. 2005, Busscher et
al. 2011]. Siffnesses were shown to decrease particularly in the NZ, observed as more
steeply linear slopes in the range of the NZ on the load-displacement curves [Busscher
etal. 2011]. These results imply that stiffness of the MSU is not constant over the range
of physiologic loads. This suggest that studies of load-sharing between active muscle
and tendons and passive vertebral bodies, intervertebral discs, and ligaments during
strenuous tasks of large compressive loads should take into consideration these changes

in spinal flexibility and/or resistance characteristics.

1.3.2 Effects of Posture on Spinal Behavior

In similar ways, postural changes, especially during loading events, are known
to influence the internal mechanics of intervertebral discs as well as spinal ROM. The
effect of posture on spinal compressive strength and intradiscal pressure has been
previously examined [Adams and Hutton 1983, Adams et al. 1994, Gooyers et al.
2012]. Results indicate that during compressive loading, intervertebral discs placed

under flexion conditions, such as that of sitting positions, lose more fluid and therefore
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lose height, especially from the NP, than do discs placed in neutral erect positions. This
fluid flow during flexion is large enough to aid in the nutrition of lumbar discs during
regular diurnal 24-hour cycles of daily living [Adams and Hutton 1983]. In full flexion,
the anterior vertebral bodies become weight bearing and intradiscal pressure is high
due to the tension response of the posterior intervertebral ligaments. In extension, i.e.
lordotic curvature normally exhibited by the lumbar spine, the posterior vertebral
arches and facet joints become weight bearing, allowing decreased intradiscal pressure
and fluid re-distribution in the intervertebral disc [Adams and Hutton 1983]. However,
the vertebral arches may be more easily damaged by smaller compressive forces.

The lumbar spine is thought to best able to resist high compressive forces when
positioned at about 50% flexion [Adams et al. 1994], indicating that sitting or standing
in a position of moderate flexion, i.e. flattening of the normal lordotic curvature or
sitting/standing “up straight,” is preferred when the lumbar spine is subjected to higher
compressive forces. However, the lumbar spine does resist large compressive loads in
its natural lordotic curvature, particularly when applied along a “follower” path that
approximates the tangent to the natural curve of the lumbar spine [Patwardhan et al.
1999], suggesting that the lumbar spine allows physiological mobility under

compressive “follower” loads and bending moments.
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1.4 Clinical Relevance to Low Back Pain

Low back pain (LBP) is a multifactorial disorder affecting many individuals
worldwide—approximately 15% of adults and 27% of the elderly. The prevalence of
LBP continues to increase in the United States. The risk factors for LBP include:
comorbidities, such as obesity, arthritis, anxiety, and depression; required occupational
movements, such as heavy lifting, pushing, pulling, and prolonged walking, standing,
or sitting; lifestyle behaviors, such as smoking, lack of exercise, and prolonged standing
or sitting; increasing age; and degenerative diseases of the spinal vertebrae and/or
intervertebral discs. Coupled with increasing health care costs, LBP causes significant
impairments on physical and psychological health and well-being, work performance,
and social responsibilities. LBP thus remains a difficult condition to manage
[Manchikanti et al. 2012].

Recent studies have confirmed that mechanical stimulation of the lumbar
intervertebral discs can reproduce the symptoms of severe and chronic back pain
[Kuslich et a. 1991, Schwarzer et al. 1995]. Lumbar intervertebral discs can be sources
of intrinsic pain with or without nerve root involvement, due to the fact that the outer
third of the AF is innervated [Yoshizawa et al. 1980, Ashton et al. 1994]. However, the
mechanism by which pain at the intervertebral disc is produced remains unclear.
Several theories have been proposed: inflammatory disturbance [Crock 1986, Jaffray
and O’Brien 1986], excessive mechanical deformation of the intervertebral disc tissues
associated with abnormal loading of the posterolateral AF and depressurization of the

NP [McNally et al. 1996, Adams et al. 2000], as well as internally displaced disc tissue
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pressing directly on the pain receptors of innervated outer AF [Kramer 1990, Donelson
et al. 1997].

Pain relief may be obtained through physical therapy exercises involving
repeated full backward bending movements of the lumbar spine, although the
mechanism through which pain is relieved has not been fully explained. Extension
postures have been reported to improve and resolve symptoms of low back pain [Ponte
et al. 1984, Nwuga and Nwuga 1985, Donelson et al. 1990, Donelson et al. 1991,
Donelson and McKenzie 1992, Delitto et al. 1993]. Various theories have been
investigated to explain pain reduction with backward bending. Extension movements
cause anterior migration of the NP thereby preventing painful posterior protrusions of
intervertebral discs [Schnebel et al. 1988, Schnebel et al. 1989, Beatie et al. 1994,
Shepherd et al. 1995, Fennell et al. 1996]. Extension movements act to transfer
compressive forces from the MSU to the posterior facet joints, effectively reducing NP
compression and allowing rehydration, which can reduce forces acting on pain-
sensitive tissues—these effects are magnified by continuous compressive “creep”
loading [Adams and Hutton 1980, McNally and Adams 1992, Adams et al. 1996].
Extension movements also reduce stress concentration peaks in the posterior AF, which
may reduce pain in patients whose painful discs are shielded by the vertebral arch in
extension [Adams et al. 2000]. All theories of intervertebral disc mechanics may relate
to spinal ROM and therefore overall function of the lumbar spine. Posture appears to
be an important mechanical factor to consider when assessing ability of lumbar spine

to resist injury.
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1.5 Study Objectives

This study is a continuation of a previous study investigating the difference in
biomechanical intervertebral disc properties between high compressive loading and
low compressive loading during ex vivo ovine model experiments. High sustained
compressive loading, called “adverse” loading, of 0.75 MPa with seven transient
“challenge” 2 MPa loads applied every 15 minutes, caused increased strain, reduced
endplate permeability, reduced disc heights, and reduced intradiscal pressure
generation during challenge loading as well as and inhibited recovery of NP pressure
generation post-challenge loading [Goodley 2014]. This study aims (1) to determine
the effect(s) of “adverse” compressive loading on spinal ROM and (2) to determine
whether or not postural interventions may provide protective effects on the spinal ROM
with “adverse” loading. We hypothesize that (1) “adverse” compressive loading causes
an increase in spinal ROM leading to instability and that (2) extension or backwards
bending prior to “challenge” loads placed on spinal segments placed under “adverse”
loading will have an interventional effect on those changes of spinal ROM.

To assess lumbar biomechanical function, force and displacement
measurements were collected using a manufactured apparatus to apply pure moments
in flexion/extension and axial rotation directions. To asses kinematic MSU rotation in
each direction, local vertebral coordinate systems were constructed using optical
markers to calculate Euler angles between each vertebral body.

Ex vivo mechanical tests of sheep lumbar motion segments were used for all
data collection. The use of ovine models to investigate and extrapolate biomechanical
behaviors of the human lumbar spine has been previously validated and is commonly
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performed [Wilke et al. 1997, Smit 2002]. The enclosed findings provide additional
understanding of the dynamics of loading and recovery of lumbar kinematics with and
without postural intervention.

Applied loads used in this study were representative physiological values: high
“adverse” compressive resting loads represent the effects of obesity, manual labor
occupations, or other lifestyle factors, such as prolonged sitting or standing, which
produce prolonged compressive stresses on the neutral spine; and “challenge” loads
represent intermittent weight bearing activities of daily living or occupational labor
causing short-term increased spinal compression. This continuous, or ramp loading, of
the spine has been previously described and validated as a more physiological
technique [Wilke et al. 1994, Crawford et al. 1995]. Increased and prolonged loading
magnitudes limit hydration recovery of the intervertebral disc and may therefore induce
laxity in the surrounding ligaments, resulting in accumulated destructive effects on

spinal biomechanics.
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Chapter 2: Spine Biomechanical Testing

2.1 Introduction

Methods of biomechanically testing the spine are generally categorized into two
groups: flexibility protocols (load-controlled) or stiffness protocols (displacement-
controlled). During flexibility testing, a linear and/or rotational load is applied to a
specimen and the resulting translational and/or rotational displacement is measured.
During stiffness testing, a translational and/or rotational displacement is applied to a
specimen while the resulting load is measured [Panjabi 1988]. In order to achieve
standardization of testing protocols, the following must be controlled: (1) the load
experienced at various vertebral levels should remain constant, regardless of the
stiffness of the intact spine, and (2) the loads or displacements applied should not
inhibit or constrain the motion of the spinal segment [Goel et al. 1995].

The recommended testing method still remains controversial. Each method
requires certain assumptions and offers different advantages. Although the stiffness
protocol appears to better replicate in vivo conditions, which would allow for a better
understanding of clinically valid responses to experimental interventions, the flexibility
protocol offers better control over the complex variables involved in spinal
biomechanics testing. Specifically, pure moment methods of flexibility testing
protocols induce a similar loading profile at each vertebral level, allowing for

comparisons between single as well as multi-levels [Goel et al. 1995].
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2.1.1 Flexibility Protocol (Load-Control)

The flexibility method allows complete freedom of movement at all vertebral
levels of the spine, achieving a more natural behavior of the spinal column. While the
lowest vertebral body is fixed to a testing surface, many different types of translational
and/or rotational loads may be applied to the highest free and unsupported end of the
spinal segment [Panjabi 1988]. A typical and most common setup involves the superior
surface of the free segment attached to a cable and pulley system, allowing load
application in such a way to minimize shear stresses experienced by the spinal segment

(Figure 9). This setup may also include the use of pneumatic actuators or gliding rails.

[t

Figure 9: Illustration of Typical Flexibility Protocol Setup. Pure moment is applied using a parallel
cable and pulleys system attached to the superior end of the free vertebral level. For the moment to
remain pure (Mpure) and constant deformation, the two forces (F) tangential to the disc (D) must always
remain parallel to each other. [Panjabi 2007] Reprinted with permission from Elsevier 2016
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The pure moment applied to the free end of the spinal segment using this
protocol is applied equally to all segments of the specimen and remains the same as the
spine deforms during testing [Panjabi 1992]. This method is commonly used to
investigate basic biomechanical characteristics of the spine and study clinically
relevant problems, such as spinal injury or instability [Panjabi et al. 1984, Goel et al.
1986, Abumi et al. 1990], spinal trauma [Oxland et al. 1994, Panjabi et al. 1994], spinal
fusion devices [Panjabi et al. 1988, Abumi et al. 1990, Wilke et al. 1998, Oda et al.
2001], and non-fusion devices [Hitchon et al. 2005, Kotani et al 2005]. Multidirectional
mechanical properties of the spine, such as degrees of motion (flexion/extension, lateral
bending, and axial rotation) may be obtained by applying moments along each of three
rotational axes within the local vertebral coordinate system.

Studies involving applications of loads to induce rotations around more than
one principle axis typically, however, involve removing the specimen or pieces of the
testing apparatus from the testing frame between individual tests [Fraysur 2010].
Recently, testing machines have been developed to allow testing around multiple axes
without specimen removal. These machines have the ability to drive one axis at a time,
making them unable to induce combined loading scenarios which are normally
exhibited physiologically [Wilke et al. 1994, Cunningham et al. 2003, Panjabi 2007].

One common modification to the flexibility protocol is the use of a follower
load to simulate the stabilizing function of the surrounding muscles [Schultz et al. 1979,
Panjabi et al. 1994, Patwardhan et al. 1999]. However, physiological stabilization is
difficult to achieve may not show relevant spinal segment responses to a particular

intervention technique or device [DiAngelo et al. 2002]. In fact, since physiological
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spine loading cannot be measured non-invasively, assumptions must be made about
loading limits during testing, leading to one important limitation to the flexibility
protocol [Fraysur 2010]. Additionally, the scenario that similar magnitudes of moment
are applied to each spinal level is not physiological, given the natural lordotic curvature

of the spine [Zufelt 2008].

2.2.2 Stiffness Protocol (Displacement-Control)

The stiffness protocol theoretically allows investigators to mimic in vivo
behavior of the spine and can be run by a constrained rotational device or a commercial
testing frames with a single degree of freedom (Figure 10). In this setup, the horizontal
lever arm is attached to the superior surface of the specimen by a constrained fixture as
well as a slide bearing of the vertical actuator, allowing the application of a compressive

force [DiAngelo et al. 2003].

Mpure
Applied load F Actuator load f\
PP
—_’"' \ -
i \ .-
Free translation _ - e
- -
\ d

Figure 10: Hlustration of Eccentric Stiffness Protocol Setup. A horizontal moment arm
unconstrained along a slide bearing applies load at a distance normal to the specimen.
[adapted from Zufelt 2008]
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The displacement-input method of the stiffness protocol often causes practical
difficulties. The location of displacement applied is of crucial importance—it is known
that different input locations cause different rotation axes, which result in uneven
distribution of loading and ambiguous load-displacement curves [Panjabi et al. 2000].
A location which produces natural physiological spinal movements is ideal but cannot
be known unless a preliminary test is performed and may furthermore move during
testing as the spine deforms [Panjabi 2007]. Additionally, if the rotation axis is not
congruent with a natural axis of rotation, the resulting spinal movements may be

constrained and may cause injury to the specimen [Grassmann et al. 1998].

2.2 Pure Moment Testing

A popular method of flexibility (load-controlled) mechanical testing is the pure
moment protocol. This is a technique in which pure, relatively non-constraining
moments are used to induce flexion/extension, lateral bending, and axial rotation in
spine specimens of two or more vertebral levels. A pure rotational load is applied to a
free and unsupported superior end of the spinal segment, while the opposite inferior
end of the spinal segment is either fixed to the base of the testing frame or placed on a
slide bearing mechanism, allowing for more physiological translational movements
during bending motions. Since the top of the spinal segment is supported by the testing
apparatus, shear deformation is minimized [Panjabi 1988, Goel et al. 1995]. The
rotational moment may be applied via several constructs: deadweights on a rail or
pulley system [Goel et al. 1995, Esses et al. 1996, Lysack et al. 2000], pneumatic

actuators on a sliding rail system [Panjabi 1988, Panjabi 2007], or a multi-axial
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hydraulic testing frame in conjunction with a cable and pulley system [Crawford et al.
1995, Esses et al. 1996, Eguizabal et al. 2010, Crawford 2011, Tang et al. 2012].

The most common testing frame used for pure moment protocols is hydraulic,
attached to a cable and pulley system [Crawford et al. 1995]. Methods for improving
the purity of pure moment loading in experiments where a servo hydraulic test frame
is used to control the tension of a pulley-formed loop of cable have been described—a
“sliding ring” mechanism attached to the superior end of the specimen for applying
moment [Eguizabal et al. 2010] and most recently a “floating ring” mechanism with
linear sliders and vertical bearings also attached to the superior end of the specimen for
applying moment [Tang et al. 2012] (Figure 11). The modifications address specific
aspects: (1) the maintenance of the parallelism of the cables, and (2) the minimization
of friction due to cables traveling across the frictionless pulley system. Thus two
parallel forces equal in magnitude and separated by some distance are applied, resulting
in a cancellation of the opposing forces and application of a net moment in one direction
(Figure 12).

Specimens are testing in sagittal plane bending (flexion/extension), coronal
plane bending (lateral bending), and transverse plane rotation (axial rotation). Pure
moment methods should ideally induce the same loading conditions for every test,

allowing easy comparison between ROM values.

27

www.manaraa.com



Figure 11: Close-Up of 3D "'Floating Ring"* (left) and "'Fixed Ring" (right). Dotted red lines
indicate the loading path for axial rotation in the floating ring setup. Dotted red lines indicate the
loading path for flexion/extension and bending motion (after the ring or specimen is rotated 90° about
its vertical axis) in the fixed ring setup. [Tang et al. 2012]

Reprinted with permission from Elsevier 2016

Figure 12: Example of Static Free-Body Diagram in Pure Moment Loading. Two 100 N forces
applied by opposite ends of a cable loop to a spine specimen are balanced by a single reaction force
(with x- and y-components) and a moment at the point R, representing the sensing origin of a multi-
axial load cell below the specimen. When the two ends of the cable are parallel and separated by a
diameter of the ring on the specimen (8 cm), although the forces cancel, the applied moment at the
center of the ring (4 cm x 100 N + 4 cm x 100 N = 8 Nm) is the same as the reaction moment M of the
specimen at the point R (25 cm x 100 N — 17 cm x 100 N = 8 Nm). [Crawford 2011]
Reprinted with permission from Elsevier 2016
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2.3 Construction of an Apparatus to Apply Pure Moments

The flexibility protocol via pure moment testing has become the most common
and accepted method to investigate spinal segment ROM in each direction
(flexion/extension, lateral bending, and axial rotation). The 3D “floating ring”
mechanism to apply rotational moments has been shown to apply consistent moments
despite varying specimen rigidity and length [Tang et al. 2012]. Since it has the
advantage to allow additional directions of pure unconstrained motion with linear
sliders and vertical bearings, a similar “ring” system, also with a linear slider and
vertical bearings to counter-balance the mass of the “ring,” was developed and
produced (Figure 13) with assistance from Howard Grossenbacher (Department of
Aerospace Engineering Machine Shop, University of Maryland). This system was used
to apply bending moments to the specimens via a cable (braided Spectra cable, 200 Ib.
capacity) and low-friction pulley loop. Another “hex joint” system, thought to be more
representative of a physiological torsional joint within the spine, was used to apply
rotational moments to the specimens (Figure 14).

Both systems were attached to the superior ends of the specimens as well as an
858 Mini Bionix Il material testing system (MTS Systems Corporation, Eden Prarie,
MN). The multi-axial hydraulic actuator of the MTS system was programmed to apply
either an upward force corresponding to a specific moment (as described previously),
for bending movements of the spine, or a specific torsional moment for axial rotation
of the spine. The inferior ends of the specimens were attached to a linear sliding

mechanism fixed on the baseplate of the testing frame, ensuring that the specimens
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were free in the plane of the MTS base and allowing for further unconstrained

movements, more natural and physiologically present in vivo.

vertical bearing ched to linear slider

Figure 13: Pure Unconstrained Loading “Ring” Mechanism. Manufactured with linear slider and
vertical bearings to apply pure moments in flexion/extension and lateral bending.
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Figure 14: Hex Joint. Used to apply pure moments in axial rotation.

2.3.1 Flexion/Extension

Pure bending moments were induced via a single cable attached to the loading
“ring” mechanism and routed to the actuator of the MTS system via low-friction pulleys
attached to a static frame (Figure 15). The pulley positions were adjusted at the
beginning of each test to achieve co-linearity of the cables extending from the loading
“ring.” Changing positions of the pulleys and directions of the cable loop allowed for

loading in flexion and extension.

2.3.2 Lateral Bending

After rotating the spine 90° about its vertical axis and re-attaching the loading
mechanism, pure bending moments were again induced via a single cable attached to
the loading “ring” mechanism and routed to the actuator of the MTS system via low-
friction pulleys attached to a static frame (Figure 15). Cable direction and pulley
positions were adjusted for left and right lateral bending, and co-linearity of the cables
extending from the loading “ring” was maintained prior to the start of each test.
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F=50N

Figure 15: MTS System Setup for Flexion/Extension and Lateral Bending.
For example, one 50 N force applied by the MTS machine separates into two 25 N forces
are applied by opposite ends of the cable loop and are parallel, separated by a diameter of
the “ring” on the specimen (10 cm = 0.1 m). A resulting 2.5 Nm moment is applied at the
center of the ring and along the length of the specimen
(0.05mx25N+0.05mx 25N =0.05m x50 N =2.5Nm).
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2.3.3 Axial Rotation

Torsional moments were applied via the “hex joint” and programmed axial

rotation of the MTS system (Figure 16).

Figure 16: MTS System Setup for Axial Rotation.
For example, a 2.5 Nm moment is applied at the hex joint and along the length of the
specimen by MTS machine.
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2.4 Performance of the Testing Apparatus

The test setup has its limitations in that there will always be an inherent
difference in the input force command and the applied moment measured by the multi-
axial load cell. This is due in part to an additional bending moment caused by the shifted
center of mass when the specimen deforms under bending loads. However, this artifact
is assumed to be present in the current “hex joint” mechanism used for axial rotation
and has been documented to be present in typical “ring” mechanisms used for
flexion/extension and lateral bending [Tang et al. 2012]. Additionally, since the ovine
specimens were so small and often difficult to secure in bone cement, the slight
variability in potting of each specimen, which may have caused off-center or
misaligned attachment of both the “ring” mechanism and “hex joint,” most likely
contributed to artifact moments and additional shear stresses placed on the specimens.

The addition of the linear sliders and vertical bearings in the loading ring setup
seems to alleviate some of this differential in moment. However, the main obstacle in
achieving ideal pure moment loading in the flexion/extension and lateral bending
directions is maintaining parallelism of the loading cable ends through applying enough
tension prior to each test—the often required cable and/or pulley adjustments. Since
the position of the cable loop and pulleys were secured at the beginning of each test
and were subsequently controlled by the MTS system, the cables may not have
remained co-linear throughout an entire test.

The main obstacle in achieving ideal pure moment loading in the axial rotation
direction is steady and repeatable control of the multi-axial load cell by the MTS
system. This additional challenge in applying pure moment loading via the MTS system
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is due to the proportional-integral-derivative (PID) mechanism of the MTS system
itself [Model 793.00 System Software 2005]. The proportional (P) gain exerts effects
on present values of error, producing an output value proportional to the current error
value in order to improve MTS system response. A high P gain results in a large change
in the output for a given change in the error, causing the system to increase the speed
of its response but may therefore become unstable, whereas a low P gain results in a
small output response to a large input error, causing the system to become less
responsive or sluggish. The integral (I) gain exerts effects on the past values of error,
contributing to both the magnitude of the current error and the duration of the current
error in order to minimize the amount of time it takes to improve the MTS system
accuracy. The | gain therefore reduces the residual error which occurs with a pure
proportional controller, but may cause the present output value to overshoot or
undershoot its input command. The derivative (D) gain exerts effects on possible future
values of error, contributing to the stability of the MTS system.

Pilot tests were performed to optimize the PID gains in both bending and
rotational ROM testing; however, the use of the PID algorithm does not guarantee
perfect control or stability of the MTS system, as seen by real-time multi-axial load cell
discrepancies between input forces or moment commands and actual forces or moments
applied (Figure 17). The reflective nature of the motion tracking markers also led to
additional challenges when collecting data, since any and all reflective surfaces of the
testing apparatus not carefully covered with spray paint and/or tape caused one or more
signals to fluctuate or drop out during ROM trials. Unfortunately, ROM results from

the reflective markers did not show noticeable movement in axial rotation. Thus
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angular rotation in the clockwise “right” and counter-clockwise” left directions were
measured by the MTS system itself—an important limitation in the use of reflective
markers for full ROM analysis.

After pilot testing, there was a noticeable and consistent difference between
angular displacements in both rotational directions—rotation in the counter-clockwise
or “left” direction was observed in real-time to be quite unstable, resulting in
consistently varied angular deformation than that of the clockwise or “right” direction.
This was assumed to be due to the setup of the specimens within the MTS system. The
multi-axial load cell would reach its limit of axial rotation in the counter-clockwise or
“left” direction and over-compensate by applying a large moment in a short amount of
time, causing the system to become unstable. Thus subsequent angular deformation
analysis should only be carried out in one direction of axial rotation—clockwise or the

“right” direction.

ROM Test: Bending
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Figure 17: Real-Time ROM Tests. Over the course of one test with three cycles of loading,
differences can be seen between the MTS input or moment command and the
actual recorded moment applied for (top) one bending direction: flexion and (bottom) one rotation
direction: clockwise or “right.”
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Repeatability analysis was performed in the ROM testing directions used in the
following study: flexion, extension, and axial rotation. Over the course of one day, a
control specimen was tested three times in each loading direction. ROM angular
displacement was calculated—the method used for displacement calculations is
described in the following chapter. Variations between tests and within tests were
calculated from Analysis of Variance (ANOVA) and can be seen in Table 1. Variations
both between and within tests were low for each direction of ROM testing. P-values
greater than 0.05 indicate no statistical differences and therefore good repeatability of
quantitative ROM measurements. This control specimen was not used in any other tests

and is not a part of any subsequent data.

Table 1: ROM Measurement Repeatability. Variance and p-values of calculated degrees of angular
displacement between and within ROM tests in flexion, extension, and axial rotation.

Variation Variation P-value
(degrees?) (degrees?)
between Tests within Tests
Extension 0.020 0.043 0.65
Flexion 0.047 0.057 0.16
Axial Rotation 0.00053 0.000067 0.23
37

www.manaraa.com



Chapter 3: Effects of Load History on Ovine Spinal ROM

3.1 Introduction

Load history alters intervertebral disc mechanical properties by modifying
water distribution in the NP region, changing hydrostatic pressure and therefore tissue
ROM response, when force is transmitted along the spine. The effects that “adverse”
loading profiles have on ovine lumbar MSU flexibility and ROM were measured to
investigate the effects of load history on spinal stability. Spinal segments subjected to
“adverse” loading profiles were expected to, as a result of limited intervertebral disc
fluid recovery, lose their stabilizing ability thereby generating increased ROM angular
displacement profiles demonstrating increased flexibility. Additionally, interventional
backward bending (extension) movements were expected to limit the loss of
intervertebral disc fluid and prevent the loss of spinal stability. This study contributes
to a greater understanding of load effects on lumbar flexibility and/or stiffness and
overall health. Findings may also inform interventional efforts to reverse probable loss

of spinal stability and function.

3.2 Materials and Methods

3.2.1 Specimen Preparation

Ovine lumbar motion segments (L2L3, L4L5) were previously harvested with
surrounding muscular and ligamentous tissues as well as bony processes, such as

transverse processes, removed. The harvested MSU’s were wrapped in saline-soaked
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gauze, and frozen (-20°C) until testing. The cross-sectional areas of the intervertebral
discs were previously estimated by measuring disc long and short axes dimensions in
order to define an applied force required to generate target loading pressures (Appendix
A). Prior to testing, specimens were allowed to thaw overnight. Once thawed, superior
and inferior vertebral bodies were potted in a custom-made fixture using Boswell
Fastray Dental Cement (Bosworth Company, Skokie, IL) so that the potted specimen
could easily be attached to the various components of the pure moment testing
apparatus. The entire fixture was positioned in an 858 Mini Bionix Il material testing
system (MTS Systems Corporation, Eden Prairie, MN).

Ten ovine MSU’s were used for testing with “adverse” loading conditions, five
with backward bending extensional interventions and five without. The L2L3 and L4L5
segments exposed to “adverse” loading with or without backward bending motions
were intermixed so that differences between those with or without interventional

extensions could be studied independent of vertebral level.

3.2.2 Mechanical Testing

Prior to testing, each MSU underwent cyclic compression loading (0.05-0.25
MPa, 50 cycles at 1 Hz) to resolve any postmortem super-hydration effects [McMillan
etal. 1996]. All ovine lumbar MSU’s received: a relatively high “adverse” compressive
loading regimen of 0.75 MPa (between 200 N and 400 N applied force), elevated from
physiological resting levels; and multiple short-term, high-load exertion “challenge”
loads of 2.0 MPa (between 500 N and 1000 N applied force) every 30 minutes. As
previously described, the 0.75 MPa creep loads were intended to replicate in vivo forces

during every day loading activities [Sato et al. 1999, Wilke et al. 1999, Claus et al.
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2008], and transient 2 MPa load exertions were intended to replicate high force
challenges such as heavy lifting, pushing or pulling, or other strenuous activities of
daily life. The challenge loads provided an opportunity to conduct a parallel
investigation, not reported in this present study, measuring intradiscal pressure and
axial strain. The MSU’s were divided into two groups to either receive or not receive:
a backwards extension “intervention” of a non-damaging 4 Nm moment (80 N applied
force) for 30 seconds prior to each “challenge” load. To minimize dehydration, the
MSU’s were sprayed with phosphate-buffered saline (Mediatech, Manassas, VA)
during the entire loading protocol.

Prior to the initiation of the first 30 minute “adverse” loading period, and after
each “challenge” load, the spinal ROM was measured by applying a £2.5 Nm moment
(50 N applied force) over 10 seconds in flexion/extension and axial rotation directions
with no preload. Unfortunately, due to the parallel investigation of intradiscal pressure
with a delicate pressure sensor placed laterally in each intervertebral disc, lateral
bending was neither applied nor investigated. Data was gathered on the third cycle of
testing in each direction to reduce the effects of the viscoelastic response.

During flexion/extension ROM testing (Figure 15), the midline that divides the
specimen into equal medial-lateral halves was aligned to the custom-built loading
“ring,” the cable and pulley system, and the hydraulic multi-axial load cell actuator
arm, using the spinous processes as a guide. The line that divides the vertebral body
from the posterior vertebral arch of the inferior vertebrae of the specimen was aligned
to the hydraulic actuator arm. The pulley positions were adjusted at the beginning of

each ROM test to achieve co-linearity of the cables extending from the loading “ring.”
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Changing positions of the pulleys and directions of the cable loop allowed for loading
in flexion and extension. The custom design of the loading “ring” mechanism attached
to the superior vertebra of the specimen ensured that the applied torque would transmit
to the specimen, negating the effects of minor misalignments. The baseplate sliding
mechanism attached to the inferior vertebra of the specimen ensured that the specimen
was free to move in a more natural path while bending.

During axial rotation ROM testing (Figure 16), both midlines that divide the
specimen into equal medial-lateral halves and divide the vertebral body from the
posterior vertebral arch of the inferior vertebra of the specimen were aligned to the
hydraulic actuator arm. The superior vertebra of the specimen was attached to the “hex
joint,” and the inferior vertebra of the specimen was again attached to the baseplate
sliding mechanism, ensuring more nature physiological movement while rotating.

Axial force, torsional moment, and torsional displacement were recorded by the
MTS system at a frequency of 50 Hz. 3D kinematics of L2 and L3 or L4 and L5 were
collected at 50 Hz for the full duration of each ROM test using an optical camera system
(Vicon MXF40, Vicon Motion Systems Ltd., Oxford, UK). Arrays of four reflective
markers mounted on lexan plates were affixed to each vertebra (Figure 18) using k-
wires. The Vicon camera system utilizes four viewing angles (four separate cameras
surrounding the testing area) to determine global positions of the reflective markers,
and those positions were used to calculate relative 3D angular rotational displacements

between vertebral by a custom MATLAB code (Appendix B).
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Figure 18: Reflective Marker Orientation and Attachment to Each Vertebra.

3.2.3 Three-Dimensional Motion Capture

To understand how the ROM data was acquired, the method with which 3D-
coordinate reflective marker data is transformed into relative rigid body rotations must
be explained. Six independent measurements—translations, rotations, or a combination
of both—are required to fully describe the 3D motion of a rigid body.

The position of a body in space is defined by the position of three non-collinear
points of that body, or its rigid extension [Panjabi et al. 1981]. Real-time measurement
systems may be used to record the positional movements of a rigid body in space. The
MATLAB code uses the global coordinate positions of at least three reflective markers
for the rigid extensions of each vertebral body to determine a local coordinate system.
Although only three markers are required to define the position of a rigid body, four
were used to maintain a rigid body coordinate signal if any one of the four marker
signals is interrupted.

The most common technique for calculating ROM rotation angles from marker
coordinate data is the Euler method, in which any change in rigid body orientation
(neglecting overall translation) is characterized by an equivalent sequence of three
rotations, one about each fixed axis of the global coordinate system [Crawford et al.

1996]. That is, the reorientation of a rigid body, such as a vertebral body, from its initial
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position described by 1, j, k to its final position described by i’,j’, k’, may be determined
by calculating first the rotation Rx about the fixed x-axis followed by the rotation Ry
about the fixed y-axis followed by the rotation Rz about the fixed z-axis (Rx 2 Ry =2
Rz). These angles Rx, Ry, and Rz are often called Euler angles [Panjabi et al. 1981,
Panjabi et al. 1993, Oxland et al. 1992]. The rotation matrix R to transform any points
from initial to final orientation is defined as:
R = Rot(x,Rx) - Rot(y,Ry) - Rot(z, Rx)

In this equation, Rot (axis, angle) represents the rotation matrix which is applied to
rotate points by an angle about its corresponding axis. The columns of the matrix R are
the vectors 1’, j°, and k’, respectively, as indicated in the following set of three Euler
rotation matrices:

[1 0 0

Rot(x,Rx) = |0 cosRx —sinRx
0 sinRx cosRx |

[ cosRy 0 sinRy]
Rot(y,Ry) = 0 1 0
|—sinRy 0 cosRy]

[cosRz —sinRz 0
Rot(z,Rz) = |sinRz «cosRz 0
0 0 1

When studying rotational motions of the spine limited to a single plane, as in
this study, the selection of a particular rotation sequence is of little significance. Thus
the sequence used matched the arbitrary sequence (Rx = Ry = Rz) commonly used

in spinal biomechanics research [Crawford et al. 1996].

43

www.manaraa.com



3.2.4 Data Analysis

Flexibility in each direction, flexion, extension, and axial rotation, was
demonstrated by the load-displacement diagrams, and ROM was quantified by the
magnitude of angular displacement [Panjabi et al. 1976]. Stiffness of the NZ was
approximated as the inverse of the slope in the range of the NZ—the zone between the
points of the largest changes in flexibility in the moment-angular displacement curve
[Smit et al. 2009].

Post-challenge loading ROM measurements were normalized against
respective baseline ROM values. Each specimen acted as its own control in order to
reduce the effects of inter-specimen variability. Statistical differences between and
within groups with and without the interventional backwards bending (extension)
motion were assessed using single factor ANOVA, for which p-values less than 0.05

were accepted as significant.

3.3 Results

Results were obtained from the ex vivo biomechanical flexibility testing
performed in repeated-cycle fashion, in each direction, on each of the ten MSU’s
throughout the entire “adverse” loading protocol at the following time points: (1)
baseline, (2) post-challenge #1, (3) post-challenge #2, and (4) post-challenge #3. Load-
displacement data collected during the third and last loading cycle were analyzed to
determine the ROM for each specimen in each condition. This method provides

sufficient time for the influence of viscoelasticity in the spinal tissues to wear off,
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allowing the spine to reach near its final angular displacement during the last loading
cycle [Wilke et al. 1998, Lee 2006]. The results quantified the effects of prolonged

“adverse” loading on the ROM of ovine lumbar specimens.

3.3.1 ROM Flexibility in Extension

Flexion/extension (FE) flexibility curves for each specimen are included in
Appendix C (Figures 32-33). The stiffness of the NZ can be generally described as
high, as shown by the small slopes of these flexibility curves. This indicates apparent
stability of the NZ in the extension direction. ROM results for each specimen in
extension are included in Appendix D (Tables 3-4). Each specimen contains a ROM
value in degrees, measured at baseline and after each challenge load. Percentages of
change in ROM after each challenge load, as compared to baseline ROM, were
calculated. Although exact values for NZ stiffness were particularly difficult to
calculate given the FE flexibility curves, estimated NZ stiffness results for each
specimen in extension are included in Appendix F (Tables 12-13). Each specimen
contains an NZ stiffness value in Nm/degree, measured at baseline and after each
challenge load. Percentages of change in NZ stiffness after each challenge load, as
compared to baseline NZ stiffness, were calculated.

As shown in Figure 19, the mean L2-L5 ROM in the extension direction for
+2.5 Nm of applied moments within specimens without interventional extension
movements were: 2.13° = 0.95° at baseline, 2.17° £+ 0.68° after the first challenge load,
1.91° £ 1.13° after the second challenge load, and 1.73° £ 0.71° after the third challenge

load. No statistically significant differences between ROM after any post-challenge
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load and baseline ROM were found in specimens without interventional extension
movements (Appendix E Table 9). As shown in Figure 20, the mean percentages of
change in ROM from baseline were: 15.09% after the first challenge load (S.D.
+49.28%), -0.66% after the second challenge load (S.D. £55.35%), and -13.83% after
the third challenge load (S.D. £31.91%). As shown in Figure 19, mean L2-L5 ROM in
the extension direction for £2.5 Nm of applied moments within specimens with
interventional extension movements were: 2.09° £ 0.82° at baseline, 1.90° + 1.05° after
the first challenge load, 1.70° + 0.94° after the second challenge load, and 1.64° + 0.62°
after the third challenge load. Again, no statistically significant differences between
ROM after any post-challenge load and baseline ROM were found in specimens with
interventional extension movements (Appendix E Table 10). As shown in Figure 20,
the mean percentages of change in ROM from baseline were: -9.88% after the first
challenge load (S.D. £24.52%), -22.71% after the second challenge load (S.D.
+19.50%), and -18.78% after the third challenge load (S.D. £31.28%). The percentages
of change in ROM results yielded no statistically significant differences between

specimens with and without interventional movements (Appendix E Table 11).
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Figure 19: Extension ROM at Baseline and after each Challenge Load.
Mean angular displacement ROM values labeled, standard deviations marked with lines.
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Figure 20: Percent Change (%) between Baseline ROM and each Post-Challenge ROM for
Extension. Mean percent change in ROM values labeled, standard deviations marked with lines.
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As shown in Figure 21, the mean L2-L5 NZ stiffness in the extension direction
for £2.5 Nm of applied moments within specimens without interventional extension
movements were: 1.52 Nm/° £ 0.56 Nm/° at baseline, 1.48 Nm/° + 0.54 Nm/* after the
first challenge load, 1.91 Nm/° £ 1.03 Nm/° after the second challenge load, and 2.10
Nm/° £ 1.03 Nm/° after the third challenge load. No statistically significant differences
between stiffness after any post-challenge load and baseline stiffness were found in
specimens without interventional extension movements (Appendix G Table 18). As
shown in Figure 22, the mean percentages of change in NZ stiffness from baseline
were: 8.56% after the first challenge load (S.D. £61.89%), 37.38% after the second
challenge load (S.D. +103.38%), and 40.87% after the third challenge load (S.D.
+56.37%). As shown in Figure 21, mean L2-L5 NZ stiffness in the extension direction
for £2.5 Nm of applied moments within specimens with interventional extension
movements were: 1.58 Nm/° £ 0.73 Nm/* at baseline, 2.02 Nm/° + 1.08 Nm/* after the
first challenge load, 2.31 Nm/° £ 1.45 Nm/° after the second challenge load, and 2.12
Nm/° £ 1.35 Nm/° after the third challenge load. Again, no statistically significant
differences between stiffness after any post-challenge load and baseline stiffness were
found in specimens with interventional extension movements (Appendix G Table 19).
As shown in Figure 22, the mean percentages of change in NZ stiffness from baseline
were: 27.80% after the first challenge load (S.D. £53.62%), 38.56% after the second
challenge load (S.D. +£39.91%), and 38.79% after the third challenge load (S.D.
+57.48%). The percentages of change in NZ stiffness results yielded no statistically
significant differences between specimens with and without interventional movements

(Appendix G Table 20).
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Figure 21: Extension NZ Stiffness at Baseline and after each Challenge Load.
Mean stiffness values labeled, standard deviations marked with lines.

NZ Stiffness Percent Change: Extension

= No Intervention ® Intervention

200.00
150.00

100.00

53.62 57.48
50.00 37.38 39.91 40.87

8.56 .
0.00 \

-50.00

Percent Change from Baseline (%)

-100.00
Post-Challenge #1 Post-Challenge #2 Post-Challenge #3

Figure 22: Percent Change (%) between Baseline NZ Stiffness and each Post-Challenge NZ
Stiffness for Extension. Mean percent change in stiffness values labeled,
standard deviations marked with lines.
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3.3.2 ROM Flexibility in Flexion

Flexion/extension (FE) flexibility curves for each specimen are included in
Appendix C (Figures 32-33). The stiffness of the NZ can be generally described as
high, as shown by the small slopes of these flexibility curves. This indicates apparent
stability of the NZ in the flexion direction. ROM results for each specimen in flexion
are included in Appendix D (Tables 5-6). Each specimen contains a ROM value in
degrees, measured at baseline and after each challenge load. Percentages of change in
ROM after each challenge load, as compared to baseline ROM, were calculated.
Although exact values for NZ stiffness were particularly difficult to calculate given the
FE flexibility curves, estimated NZ stiffness results for each specimen in flexion are
included in Appendix F (Tables 14-15). Each specimen contains an NZ stiffness value
in Nm/degree, measured at baseline and after each challenge load. Percentages of
change in NZ stiffness after each challenge load, as compared to baseline NZ stiffness,
were calculated.

As shown in Figure 23, mean L2-L5 ROM in the flexion direction for 2.5 Nm
of applied moments within specimens without interventional extension movements
were: 2.56° £ 0.55° at baseline, 3.83° + 1.57° after the first challenge load, 3.80° + 1.10°
after the second challenge load, and 4.86 ° + 1.94° after the third challenge load. The
only statistically significant difference between ROM after any post-challenge load and
baseline ROM was found after the final challenge (#3) in specimens without
interventional extension movements (Appendix E Table 9). As shown in Figure 24, the
mean percentages of change in ROM from baseline were: 45.49% after the first

challenge load (S.D. £27.81%), 47.43% after the second challenge load (S.D.
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+20.41%), and 85.59% after the third challenge load (S.D. £46.70%). As shown in
Figure 23, mean L2-L5 ROM in the flexion direction for £2.5 Nm of applied moments
within specimens with interventional extension movements were: 2.86° + 0.63° at
baseline, 3.83° £ 1.42° after the first challenge load, 4.30° + 1.75° after the second
challenge load, and 4.44° + 1.06° after the third challenge load. Again, the only
statistically significant difference between ROM after any post-challenge load and
baseline ROM was found after the final challenge (#3) in specimens without
interventional extension movements (Appendix E Table 10). As shown in Figure 24,
the mean percentages of change in ROM from baseline were: 30.81% after the first
challenge load (S.D. +20.78%), 46.21% after the second challenge load (S.D.
+32.26%), and 55.90% after the third challenge load (S.D. +20.46%). The percentages
of change in ROM results yielded no statistically significant differences between

specimens with and without interventional movements (Appendix E Table 11).
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Figure 23: Flexion ROM at Baseline and after each Challenge Load.
Mean angular displacement ROM values labeled, standard deviations marked with lines.
Statistically significant p-values shown.
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Figure 24: Percent Change (%) between Baseline ROM and each Post-Challenge ROM for
Flexion. Mean percent change in ROM values labeled, standard deviations marked with lines.

As shown in Figure 25, the mean L2-L5 NZ stiffness in the flexion direction
for £2.5 Nm of applied moments within specimens without interventional extension
movements were: 1.20 Nm/° £ 0.27 Nm/° at baseline, 0.80 Nm/° + 0.34 Nm/* after the
first challenge load, 0.79 Nm/° £ 0.26 Nm/° after the second challenge load, and 0.64
Nm/° £ 0.34 Nm/° after the third challenge load. Statistically significant differences
between NZ stiffness after the second and third post-challenge loads (#2 and #3) and
baseline NZ stiffness was found in specimens without interventional extension
movements (Appendix G Table 18). As shown in Figure 26, the mean percentages of
change in NZ stiffness from baseline were: -34.23% after the first challenge load (S.D.
+24.28%), -34.52% after the second challenge load (S.D. £18.74%), and -46.88% after
the third challenge load (S.D. £27.79%). As shown in Figure 25, mean L2-L5 NZ

stiffness in the flexion direction for £2.5 Nm of applied moments within specimens
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with interventional extension movements were: 0.93 Nm/° £ 0.21 Nm/° at baseline,
0.75 Nm/° = 0.30 Nm/° after the first challenge load, 0.68 Nm/° £ 0.24 Nm/° after the
second challenge load, and 0.58 Nm/° £ 0.12 Nm/° after the third challenge load. The
only statistically significant difference between NZ stiffness after any post-challenge
load and baseline NZ stiffness was found after the final challenge (#3) in specimens
with interventional extension movements (Appendix G Table 19). As shown in Figure
26, the mean percentages of change in NZ stiffness from baseline were: -20.93% after
the first challenge load (S.D. £17.93%), -28.49% after the second challenge load (S.D.
+12.88%), and -36.60% after the third challenge load (S.D. £8.34%). The percentages
of change in NZ stiffness results yielded no statistically significant differences between

specimens with and without interventional movements (Appendix G Table 20).
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Figure 25: Flexion NZ Stiffness at Baseline and after each Challenge Load.
Mean stiffness values labeled, standard deviations marked with lines.
Statistically significant p-values shown.
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Figure 26: Percent Change (%) between Baseline NZ Stiffness and each Post-Challenge NZ
Stiffness for Flexion. Mean percent change in stiffness values labeled,
standard deviations marked with lines.

3.3.3 ROM Flexibility in Axial Rotation

Axial rotation (AR) flexibility curves for each specimen are included in
Appendix C (Figures 34-35). The stiffness of the NZ can be generally described as low,
as shown by the large slopes of these flexibility curves. This indicates apparent
instability of the NZ in the axial rotation direction. ROM results for each specimen in
axial rotation are included in Appendix D (Tables 7-8). Each specimen contains a ROM
value in degrees, measured at baseline and after each challenge load. Percentages of
change in ROM after each challenge load, as compared to baseline ROM, were
calculated. Estimated NZ stiffness results for each specimen in axial rotation are
included in Appendix F (Tables 16-17). Each specimen contains an NZ stiffness value

in Nm/degree, measured at baseline and after each challenge load. Percentages of
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change in NZ stiffness after each challenge load, as compared to baseline NZ stiffness,
were calculated.

As shown in Figure 27, mean L2-L5 ROM in the axial rotation direction for
+2.5 Nm of applied moments within specimens without interventional extension
movements were: 2.14° = 0.65° at baseline, 2.12° £+ 0.42° after the first challenge load,
2.91° £ 0.70° after the second challenge load, and 2.90° + 0.39° after the third challenge
load. No statistically significant differences between ROM after any post-challenge
load and baseline ROM were found in specimens without interventional extension
movements (Appendix E Table 9). As shown in Figure 28, the mean percentages of
change in ROM from baseline were: 7.50% after the first challenge load (S.D.
+44.77%), 40.96% after the second challenge load (S.D. +32.00%), and 45.34% after
the third challenge load (S.D. +47.06%). As shown in Figure 27, mean L2-L5 ROM in
the axial rotation direction for £2.5 Nm of applied moments within specimens with
interventional extension movements were: 2.49° £ 1.19° at baseline, 2.66° + 0.45° after
the first challenge load, 2.93° + 0.35° after the second challenge load, and 3.37 ° + 0.90°
after the third challenge load. Again, no statistically significant differences between
ROM after any post-challenge load and baseline ROM were found in specimens with
interventional extension movements (Appendix E Table 10). As shown in Figure 28,
the mean percentages of change in ROM from baseline were: 43.00% after the first
challenge load (S.D. +105.01%), 69.50% after the second challenge load (S.D.
+146.15%), and 106.84% after the third challenge load (S.D. +214.13%). The

percentages of change in ROM results yielded no statistically significant differences
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between specimens with and without interventional movements (Appendix E Table

11).
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Figure 27: Axial Rotation ROM at Baseline and after each Challenge Load.
Mean angular displacement ROM values labeled, standard deviations marked with lines.
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As shown in Figure 29, the mean L2-L5 NZ stiffness in the axial rotation
direction for £2.5 Nm of applied moments within specimens without interventional
extension movements were: 0.06 Nm/° + 0.04 Nm/° at baseline, 0.04 Nm/° £ 0.03 Nm/°
after the first challenge load, 0.05 Nm/° + 0.02 Nm/° after the second challenge load,
and 0.08 Nm/° £ 0.06 Nm/° after the third challenge load. No statistically significant
differences between stiffness after any post-challenge load and baseline stiffness were
found in specimens without interventional extension movements (Appendix G Table
18). As shown in Figure 30, the mean percentages of change in NZ stiffness from
baseline were: -19.72% after the first challenge load (S.D. £63.07%), 1.77% after the
second challenge load (S.D. £57.31%), and 31.49% after the third challenge load (S.D.
+42.53%). As shown in Figure 29, mean L2-L5 NZ stiffness in the flexion direction
for £2.5 Nm of applied moments within specimens with interventional extension
movements were: 0.06 Nm/° £ 0.05 Nm/° at baseline, 0.08 Nm/° + 0.03 Nm/* after the
first challenge load, 0.06 Nm/° £ 0.01 Nm/° after the second challenge load, and 0.04
Nm/° £ 0.01 Nm/° after the third challenge load. Again, no statistically significant
differences between stiffness after any post-challenge load and baseline stiffness were
found in specimens with interventional extension movements (Appendix G Table 19).
As shown in Figure 30, the mean percentages of change in NZ stiffness from baseline
were: -91.91% after the first challenge load (S.D. +2.48%), -93.65% after the second
challenge load (S.D. £0.89%), and -94.94% after the third challenge load (S.D.
+1.96%). The percentages of change in NZ stiffness results yielded statistically
significant differences between specimens with and without interventional extensional

movements after all challenge loads (Appendix G Table 20).
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NZ Stiffness: Axial Rotation
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Figure 29: Axial Rotation NZ Stiffness at Baseline and after each Challenge Load.
Mean stiffness values labeled, standard deviations marked with lines.

NZ Stiffness Percent Change: Axial Rotation
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Figure 30: Percent Change (%) between Baseline NZ Stiffness and each Post-Challenge NZ
Stiffness for Axial Rotation. Mean percent change in stiffness values labeled,
standard deviations marked with lines. Statistically significant p-values shown.
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3.4 Discussion

The objective of this ex vivo ovine model biomechanical study was to quantify
and assess the ROM and NZ stiffness achieved after prolonged “adverse” compressive
loading conditions, with and without intermittent extension or backwards bending
movements. The current study found no significant differences between the change in
ROM in any direction with and without interventional extension movement. The study
found significant differences between the change in estimated NZ stiffness with and
with and without interventional extension movement in only the axial rotation
direction. However, this difference did not demonstrate protective effects of the
interventional extension against spinal instability, i.e. decreased NZ stiffness. These
variable results may be due to the variability in bone density and tissue parameters
within different spinal MSU specimens—specifically the degree of spinal ligament
stripping. This difficulty with a large variability over spinal specimens has previously
been reported [Twomey and Taylor 1982, Wilke et al. 1998, Busscher et al. 2011]. Due
to the limited availability of ovine specimens and timeframe of completing the present
study, a small sample size was used.

Interesting trends over the course of the “adverse” loading protocol were
observed. A slight decrease in ROM in the extension direction and complementary
increase in NZ stiffness was observed over the course of the entire loading protocol in
specimens with and without interventional extension movements. An apparent increase
in ROM in the flexion direction and complementary decrease in NZ stiffness was
observed over the course of the entire loading protocol in specimens with and without
interventional extension movements. An apparent increase in ROM in the axial rotation
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direction was observed over the course of the entire loading protocol in specimens with
and without interventional extension movements. However, the NZ stiffness results in
the axial rotation direction were not consistent with ROM data—a decrease in the NZ
stiffness was observed over the course of the loading protocol in specimens with
interventional extension movements, but an initial decrease and subsequent increase in
NZ stiffness was observed over the course of the loading protocol in specimens without
interventional extension movements.

The percentages of change in ROM and NZ stiffness may have a more
significant impact on the larger relative effect of the “adverse” creep loading. However,
these outcomes are difficult to compare to literature due to the fact that there have been
few studies, most of which have used human cadaveric specimens, investigating ROM
after prolonged creep loading—often applied in the direction of ROM testing, not in
axial compression alone.

A larger ROM, and complementary reduced NZ stiffness, indicate that the
spinal MSU’s became more flexible and potentially more unstable after prolonged
“adverse” loading, increasing the necessity for muscles to compensate [Panjabi 1992,
Oxland and Panjabi 1992, Cholewicki et al. 1997]. Prolonged creep loading has been
shown to induce fluid loss in the NP; slack collagenous fibers causing circumferential
clefts within the AF; and laxity in the ligaments, facet joint capsules, and intervertebral
discs—this laxity results in fewer reflexive stabilizing forces provided by surrounding
musculature [Agroubni and Shirazi-Adl 1996, Solomonow et al. 1999]. It is obvious

that in the present ex vivo study, surrounding spinal ligament and muscular stabilizing
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forces are not present and therefore results should be carefully extrapolated and
interpreted for the ovine model in vivo situation.

Results of the current study should be interpreted taking the study protocol into
account. Different studies use highly different protocols, and recommendations for
biomechanical testing of spinal segments are variable [Crawford 2010, Busscher et al.
2011]. The recommendations of previous studies were followed for preparation of the
segments, test environment, and loading conditions [Crawford et al. 1995, Wilke et al.
1998, Lee 2006, Eguizabal et al. 2010, Tang et al. 2012]. Instantaneous loading with a
non-damaging applied moment of +2.5 Nm was recommended for ROM testing in
ovine spinal segments [Lee 2006]. A pilot study in our test setup showed damage or
potting slippage of ovine MSU’s when loaded to more than 5 Nm in the cyclic ROM
tests. Thus £+2.5 Nm appeared to be an appropriate magnitude of applied moment for
ROM evaluation, and 4 Nm for 30 seconds appeared to be an appropriate applied
moment for interventional extension testing without potting or specimen damage.

Axial compressive forces placing 0.75 MPa of “adverse” loading pressure and
2.0 MPa of “challenge” loading pressure on each MSU were chosen to replicate in vivo
pressures placed on the lumbar spine during every day loading activities such as sitting
or standing and transient exertional activities such as heavy lifting, pushing or pulling,
etc. [Sato et al. 1999, Wilke et al. 1999, Claus et al. 2008, Goodley 2014]. Most studies
describing biomechanical behavior apply a constant static or cyclic load between 15
and 20 minutes, or up to 30 minutes for older specimens [Kaigle et al. 1992, McGill
and Brown 1992, Little and Khalsa 2005, Van der Veen et al. 2006]. As the present

study uses older ovine MSU specimens stored for an extended amount of time,
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“adverse” compressive loading was applied for 30 minutes prior to each “challenge”
load and subsequent ROM testing.

Furthermore, compressive loads, in a pure axial direction or a more natural
“follower” load path, as well as bending loads each have a different influence on the
fluid loss of the NP, biomechanics of the intervertebral disc, and therefore motion
behavior of spinal segments [Wilke et al. 1998, Patwardhan et al. 2003, Stanley et al.
2004, Tawackoli et al 2004]. Bending creep most likely results in little fluid loss but
substantial viscoelastic strain of the fibers of the AF, but compression creep results in
substantial fluid loss [Busscher et al. 2011]. In the present study, compression was
applied in a purely axial direction due to the manufactured fixtures used for attachment
of the MSU’s to the ROM testing apparatus and MTS system. Thus load magnitude,
creep type, and of loading time, and length of time during which specimens were placed
under interventional extension backward bending conditions are important
considerations when interpreting the results of the current study, especially in

comparison to previous investigations.

3.4.1 Adverse Load History Decreases ROM and Increases NZ Stiffness
in Extension

Although the current study found no significant differences between the change
in ROM with and without interventional extension movement, interesting ROM trends
in the extension direction over the course of the “adverse” loading protocol were
observed. Without intervention, ROM in the extension direction initially increased after
the first challenge load but then decreased after the second and third challenge loads,

until the ROM decreased by approximately 13.8% compared to baseline ROM. With
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intervention, ROM in the extension direction decreased after all challenge loads, until
the ROM decreased by approximately 18.8% compared to baseline ROM. Although
NZ stiffness was extremely difficult to quantitatively determine from the varying load-
deformation flexibility curves, similar trends in NZ stiffness were observed. Without
intervention, NZ in the extension direction increased over the course of the “adverse”
loading protocol, until the NZ stiffness increased by approximately 41% after the third
challenge load compared to baseline NZ stiffness. With intervention, NZ in the
extension direction increased after all challenge loads, until the NZ stiffness increased
by approximately 39% compared to baseline NZ stiffness. However, no statistically
significant differences of ROM or NZ stiffness between baseline and challenge loads
were observed, both between and within groups of specimens with and without
interventional extension movements.

Contrary to our hypothesis, these results may indicate increasing spinal MSU
stability in the extension direction after “adverse” compressive loading. The facet
joints, which progressively absorb more loads during extension, may contribute to this
stability. This effect may be compounded by reduced NP hydration and increased laxity
of the AF ligaments, causing additional load sharing with the facet joints. The superior
articular processes of the inferior vertebral body exert considerable frictional forces
upon the superior vertebral body of the MSU, increasing resistance to motion in the
extension direction, leading to reduced flexibility. Additionally, the interventional
backwards extension movement does seem to provide a protective effect of increasing

spinal stability in extension under “adverse” loading conditions.
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3.4.2 Adverse Load History Increases ROM and Decreases NZ Stiffness
in Flexion

Although the current study found no significant differences between the change
in ROM with and without interventional extension movement, interesting ROM trends
in the flexion direction over the course of the “adverse” loading protocol were
observed. Without intervention, ROM in the flexion direction increased after all
challenge loads, until the ROM increased by approximately 85.6% compared to
baseline ROM. With intervention, ROM in the flexion direction increased after all
challenge loads, until the ROM also increased by approximately 55.9% compared to
baseline ROM. Statistically significant increases in ROM were observed between
baseline and the third challenge load, in specimens with and without interventional
extension movements. Although NZ stiffness was extremely difficult to quantitatively
determine from the varying load-deformation flexibility curves, similar trends in NZ
stiffness were observed. Without intervention, NZ in the flexion direction decreased
over the course of the “adverse” loading protocol, until the NZ stiffness decreased by
approximately 47% after the third challenge load compared to baseline NZ stiffness.
With intervention, NZ in the flexion direction decreased after all challenge loads, until
the NZ stiffness decreased by approximately 37% compared to baseline NZ stiffness.
Statistically significant increases in NZ stiffness were observed between baseline and
the second and third challenge loads, in specimens without interventional extension
movements, and between baseline and the third challenge load, in specimens with

interventional extension movements. However, no statistically significant differences
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of change in ROM or NZ stiffness between groups of specimens with and without
interventional extension movements were observed.

The fact that ROM is greater in flexion than extension is in agreement with
previously-reported literature [Pearcy et al. 1984]. In agreement with our hypothesis,
these results may indicate increasing spinal MSU instability in the flexion direction
after “adverse” compressive loading. Reduced NP hydration as well as increased stress
concentrations and laxity in the AF ligaments and any other remaining spinal ligaments
may contribute to this instability during flexion. The previously removed musculature;
ligaments, especially the ALL, PLL, and spinous ligaments; and bony processes during
specimen harvesting, (all of which would which normally contribute to resisting
excessive flexion movements) may have contributed to this instability. Additionally,
the interventional backwards bending extension movement does seem to provide a
protective effect against decreasing spinal stability in flexion under “adverse” loading

conditions.

3.4.3 Adverse Load History Increases ROM and Decreases NZ Stiffness
in Axial Rotation

Although the current study found no significant differences between the change
in ROM with and without interventional extension movement, interesting ROM trends
in the axial rotation directions over the course of the “adverse” loading protocol were
observed. Without intervention, ROM in the axial rotation direction increased after all
challenge loads, until the ROM increased by approximately 45.3% compared to
baseline ROM. With intervention, ROM in the axial rotational direction also increased

after all challenge loads, until the ROM increased by approximately 106.8% compared
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to baseline ROM. The particularly large angular deformations in the NZ across most
specimens and loading conditions indicate large spinal MSU instability in axial
rotation. Without intervention, results with relatively large errors were found—NZ in
the axial rotation direction initially decreased after the first challenge load but
subsequently increased over the course of the “adverse” loading protocol, until the NZ
stiffness increased by approximately 31% after the third challenge load compared to
baseline NZ stiffness. With intervention, NZ in the axial rotation direction decreased
after all challenge loads, until the NZ stiffness decreased by approximately 95%
compared to baseline NZ stiffness. However, no statistically significant differences of
ROM or NZ stiffness between baseline and challenge loads were observed within
groups of specimens with and without interventional extension movements. Finally,
although no statistically significant differences of change in ROM between groups of
specimen with and without interventional extension movements were observed,
statistically significant differences of change in NZ stiffness between groups were
observed.

In agreement with our hypothesis, these results may indicate increasing spinal
MSU instability in the axial direction after “adverse” compressive loading. The
previously removed musculature, ligaments, and bony processes during specimen
harvesting, as well as the dehydration and increased laxity of the AF fibers (all of which
would which normally contribute to resisting excessive rotational movements) may
have contributed to this high degree of instability. Additionally, the interventional
backwards bending extension movement may not provide a protective effect against

decreasing spinal stability in axial rotation under “adverse” loading conditions.
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3.4.4 Limitations

The flexibility testing protocol was successfully implemented to quantitatively
assess the motion of lumbar MSU’s. The 3D motion capture system proved to be
reliable in capturing and quantifying the kinematics of the spine in real-time. Although
the flexibility method allowed each ROM test to be repeatable with consistency,
variations in the features of each specimen such as age, bone density, and size of
vertebral bodies required it to be handled individually and with care. In fact, the small
size of ovine vertebral bodies necessitated the potting of specimen in a custom-made
fixture with particular attention, making sure to keep the intervertebral disc level
(parallel to the ground in its horizontal axis) and to cover enough surface area on each
vertebral body with enough bone cement to maintain stability during ROM testing,
reducing the possibility of specimen detaching from the bone cement.

One particular limitation that is important to note is the challenge of attaching
the lexan plates with reflective motion tracking markers to each vertebral body in such
a way as to maintain constant signals to each camera. Because each specimen used in
the current study had been used in a previous study, in which a hole was drilled
horizontally into the superior vertebral body of each MSU, maintaining rigid
attachment of the lexan plates containing motion tracking markers to that vertebral
body via k-wire insertion was difficult—occasionally the real-time marker coordinate
data collected from the motion tracking cameras showed unintentional movement after
each loading cycle in one direction of spinal ROM. The reflective nature of the motion
tracking markers also led to additional challenges when collecting data. Because the
cameras are sensitive to any and all reflective surfaces within their capture volume,
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particular care in spray painting components of the testing apparatus was taken.
Additional surfaces found to be reflective during testing were covered with tape, if and
when possible. When those additional reflections were unable to be covered, they often
interfered with the motion tracking marker signals, causing one or more signals to
fluctuate and/or drop out during part or all of a single trial in one ROM
flexion/extension direction. As stated previously, due to the difficulty in measuring
axial rotation with the reflective markers, the MTS system itself calculated degree of
angular deformation in the ROM axial rotation direction. All limitations of the motion
tracking system combined caused difficulty in generating the flexibility curves of each
ROM test and therefore explicit calculation of MSU stiffness and complete
determination of stability after prolonged “adverse” loading conditions.

The biomechanical ROM testing apparatus itself was shown to perform
repeatable measurements but has many limitations. An inherent difference in the
applied moment and the moment measured by the multi-axial load cell is always
present, due to (1) the proportional-integral-derivative (PID) mechanism of the MTS
system, and (2) an additional bending moment caused by the use of the “hex joint” in
axial rotation or the shifted center of mass typical of pure moment “ring” testing
mechanisms [Tang et al. 2012] in flexion/extension. Although pilot testing with ovine
MSU’s was conducted to optimize PID values for both axial force and torsional
moment application, the use of the PID algorithm does not guarantee perfect control or
stability of the MTS system.

Although the artifact moments caused by the shifting center of mass while

testing flexion/extension ROM with the “ring” mechanism was partially alleviated
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through the use of linear sliders and vertical bearings, the most important limitation in
applying pure moments is maintaining parallelism of the loading cable ends by
applying tension prior to each ROM test, as described previously. The loading cable
may not have remained co-linear throughout the ROM test, as the MTS system was
programmed to control vertical motion of the cable loop to apply and release bending
moments. Artifact moments may also have been induced while testing axial rotation
ROM with the use of the “hex joint,” as it allows multidirectional movement as well as
rotation, similar to a manufactured ball-and-socket joint. Additionally, the slight
variability in potting of each specimen, which may have caused off-center or
misaligned attachment of both the “ring” mechanism and “hex joint,” most likely
contributed to artifact, or non-pure, bending moments. Thus, pure ROM testing was
not 100% successful throughout the entirety of this study.

Other limitations of the current study are related to the small sample size of
ovine MSU specimens as well as the nature of the ex vivo ovine model testing. It is
important to note that the 4 Nm backwards bending interventional extension moment
was applied for just 30 seconds—this may not have been enough time to allow for
rehydration of the inner NP and outer AF fibers, which may have prevented statistically
significant differences between specimens with and without interventional extension
movements from occurring. Additional influences that affect ROM and stiffness results
include: age of the specimens; degree of stripping of surrounding motion-facilitating
and motion-limiting musculature, tendons, ligaments, and bony structures; and residual
hydration effects due to storing specimen in a freezer for an extended period of time.

Furthermore, although the present study only tested single spinal units, multi-level
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segments have been shown to be more representative of the normal physiological
conditions [Adams 1995, Dickey and Kerr 2003, Goel et al. 2006].

As with all ex vivo studies, a final limitation of the current study is the non-
physiological testing environment. Although the tested MSU’s were repeatedly sprayed
with saline throughout testing, the test environment and hydration status of the spinal
segment is known to influence the biomechanical ROM characteristics [Pflaster et al.
1997, Race et al. 2000]. Thus the interpretation of the results should also carry the
understanding that the current study was limited to using ex vivo specimens,
specifically without surrounding tissues i.e. spinal-column stabilizing musculature,
which have been stored for a long period of time and have been used in previous

compressive loading experiments.

3.5 Significance

Load history influences the fluid-related biomechanics of the intervertebral disc
and spinal ROM. High compressive “adverse” loads limit fluid recovery and pressure
regeneration of the NP of the intervertebral disc, thereby limiting the ability of the AF
and ligaments to provide MSU stabilization and prevent excessive motion. This higher
ROM flexibility of the MSU’s may suggest that creep deformation occurs during
prolonged compressive loading. This indicates that surrounding musculature provides

compensating stabilizing forces to reduce the risk of injury or low-back problems.
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Chapter 4: Conclusions

4.1 Summary

Sheep lumbar motion segments are validated and often used to assess spinal
biomechanical properties translatable to the human lumbar spine [Wilke et al. 1997,
Smit et al. 2002]. The results of the current study provide an additional understanding
of the dynamics of long-term compressive loading in ovine intervertebral disc
mechanics and spinal ROM:

(1) High compressive “adverse” loads seem to cause an increase in ROM flexibility
and complementary decrease in NZ stiffness and therefore increase in spinal
instability in both flexion and axial rotation directions. This may be due to the
limited fluid recovery of the intervertebral disc pressure regeneration of the NP,
which induces laxity into the AF fibers and limits the surrounding spinal
ligaments to prevent excessive bending and/or rotational motion. However,
compensating forces of the facet joints seem to cause a decrease in ROM
flexibility and complementary increase in NZ stiffness and therefore increase
in spinal stability in the extension direction.

(2) Interventional backwards bending or extension movements may provide a
protective but non-significant effect against the increased spinal instability in
flexion/extension.

These results address the hypothesis that high “adverse” compressive loading
conditions cause changes in spinal ROM and NZ stiffness, which may in turn be

affected by interventional backwards bending motion.
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These findings also indicate and suggest confirmation of the theory that
surrounding musculature provides compensating stabilizing forces to reduce the risk of
injury or low-back problems [Busscher et al. 2011] in everyday life. Body weight in a
seated or standing position, occupational demands, household chores, and leisure-time
physical activity behaviors often play roles in spinal instability and back pain. Further
interpretation may therefore provide human physiological insight into load-induced
biomechanical changes to guide and advance clinical investigations into the treatment

of low back pain and loss of lumbar spinal function in patients.

4.2 Future Directions

The present investigation was performed as part of longitudinal study aiming to
reveal the effects of load history on spinal ROM and intervertebral disc biomechanics
and identify postural interventions effective at reversing spinal instability and critical
loss of biomechanical function. The testing apparatus manufactured for use in the
current study provides a method to apply physical therapy-type movements on MSU’s
loaded in the MTS system. Conclusions of the current study indicate that extension or
backwards bending movements may act to mitigate the instability effects of prolonged
static “adverse” loading on spinal biomechanics. Other physical therapy-type motions
such as flexion, lateral bending, axial rotation, traction, or some combination may be
investigated in future studies. A longer period of time to apply interventional postures
is also encouraged. Regular completion of such interventional, non-invasive practices
may improve long-term functional health by mitigating or reversing the damaging

effects of “adverse” loading.
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Additional manipulation of the testing fixtures used in conjunction with the
MTS system may be performed to further elucidate the effects of various loading
profiles, such as cyclic loading or creep loading in a specific bending directions, on
specific tissue response. Different loading conditions may have different effects on
spinal biomechanics, especially depending upon prior loading history.

The exact influence of differences in geometry of the vertebrae, facet joints, and
intervertebral discs should be investigated further. The influence of spinal implants,
fusions, and other interventional devices on spinal ROM and NZ stiffness may also be
investigated with the use of the biomechanical testing apparatus. Although the ex vivo
testing conditions of these types of biomechanical studies require stripping of the
surrounding tendon and musculature tissues, the harvesting of surrounding spinal
ligaments and bony structures should be carefully performed in future studies.
Furthermore, although most studies only test single MSU’s, multi-level segments may
be more representative of normal physiological situations.

Finally, the goals of future investigations must simultaneously include the
growth of spinal biomechanical knowledge and as well as its integration into patient
care therapies through lifestyle behaviors and physical medicine and rehabilitation
practices. Meaningful findings and theories must be translated from bench-top to
clinical practice, in order to limit the loss of spinal function with diseases prevalent
worldwide, such as low back pain. The overarching aim of scientific research is to

improve upon and advance patient care.
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Appendix A: Specimen Intervertebral Disc Geometries

.
—

Figure 31: Two-Dimensional Representation of
Intervertebral Disc. Segment A of long axis and
segment B of short axis demonstrated by blue lines.

Table 2: Disc Geometry Calculations. To calculate the length of segment A of long axis and length
of segment B of short axis, the long and short axes of each disc were measured 3 times, averaged, and
divided in half. The area of each disc was calculated using the equation for the area of an ellipse:

area = mAB. The axial compressive force to generate “adverse” and “challenge” loading conditions
was calculated using the respective target pressures: F = P*area.

Specimen ID

Sheep 5
L2L3
Sheep 5
L4L5
Sheep 6
L4L5
Sheep 8
L4L5
Sheep 7
L2L3
Sheep 7
L4L5
Sheep 9
L2L3
Sheep 10
L2L3
Sheep 11
L2L3
Sheep 11
L4L5

Segment A of
Long Axis

(mm)

13.59
14.58
13.73
15.08
11.01
12.45
13.20
13.96
13.33

14.16

(mm)

9.38
9.20
10.00
10.38
8.15
8.54
10.33
11.89
10.55

10.40

Segment B of
Short Axis

74

Area of Disc

(mm?)

400.37
421.53
431.13
491.68
281.97
334.06
428.21
521.58
441.64

462.63

Force to

Generate 0.75

MPa
“Adverse”
Load (N)

300.28
316.14
323.24
368.76
211.47
250.55
321.16
391.18
331.23

346.97

Force to
Generate 2.0
MPa
“Challenge”
Load (N)

800.75
843.05
862.25
983.35
563.93
668.13
856.43
1043.16
883.28

925.26
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Appendix B: MATLAB Code

The following MATLAB code and function returns relative rotational angles between
vertebral bodies, used to calculate absolute angular displacement between the

superior vertebral body relative to the inferior vertebral body:

o)

% load global positions of reflective markers
load data

o)

% calculate unit vectors of lower vertebral body to set up
orthogonal axes

11lx = data(:,1:3) - data(:,4:6);

1lly = data(:,7:9) - data(:,4:6);

1lx = 11x./(sgrt(sum(l1lx.”2,2))*ones(1,3));
1ly = 1ly./(sqgrt(sum(lly.”2,2))*ones(1,3));
11z = cross(llx,1lly);

11z = 11z./(sqgrt(sum(llz.”2,2)) *ones (1,3));
lly = cross(llz,11x);

(

1ly = 1ly./(sgrt(sum(lly.”2,2)) *ones(1,3));

Q

% position matrix for lower vertebral body

RotGtoll(1l,:,:) = 1llx';
RotGtoll (2,:,:) = 1lly';
RotGtoll (3,:,:) = 1l1lz"';

o)

% calculate unit vectors of upper vertebral body to set up
orthogonal axes

12x = -data(:,10:12) + data(:,13:15);

12y = data(:,16:18) - data(:,10:12);

12x = 12x./(sqgrt(sum(1l2x.”72,2))*ones (1,3));

(
12y = 12y./ (sgrt(sum(12y.”2,2)) *ones (1,3));
12z = cross(12x,12y);
12z = 12z./(sqgrt(sum(12z.”2,2)) *ones (1,3));
12y = cross(1l2z,12x);
12y = 12y./(sqgrt(sum(l2y.”2,2)) *ones (1,3));

Q

% position matrix for upper vertebral body

RotGtol2(1,:,:) = 12x';
RotGtol2(2,:,:) = 12y';
RotGtol2(3,:,:) = 12z"';
for i = l:size(data,l)

o)

% calculate rotation matrix

rot = RotGtoll(:,:,i)*RotGtol2(:,:,1i)";
% calculate rotation angles

[rx ry rz]= GetEulerAngles (rot);

ang(i,:) = [rx ry rz].*180./pi;

end
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x1lswrite('results.xls',ang);

function [rx ry rz]= GetEulerAngles (R)

% returns the rotation along x, y and z direction from a Rotation
Matrix

$Inputs:
% R= 3x3 Rotation Matrix
%Outputs:
% rx= Rotation along x direction in radians
% ry= Rotation along y direction in radians
rz= Rotation along z direction in radians

oe

$ R =

S [ cos (ry) *cos (rz),

-cos (ry) *sin(rz), sin(ry) ]

% [ cos(rx)*sin(rz) + cos(rz)*sin(rx)*sin(ry), cos(rx)*cos(rz) -

sin(rx) *sin(ry) *sin(rz), -cos(ry)*sin(rx)]

% [ sin(rx)*sin(rz) - cos(rx)*cos(rz)*sin(ry), cos(rz)*sin(rx) +
]

cos (rx) *sin(ry) *sin(rz), cos(rx)*cos(ry)

% Author : Sandeep Sasidharan
% http://sandeepsasidharan.webs.com

ry=asin(R(1,3));
rz=acos (R(1,1)/cos(ry));
rx=acos (R(3,3) /cos(ry));
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Appendix C: ROM Flexibility Curves

Sheep 5 (L2L3) FE Flexibility Sheep 5 (L4L5) FE Flexibility
without "Intervention" with Intervention
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Figure 20: Flexibility curves during the last cycle of testing in flexion/extension (FE).
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Figure 21: Flexibility curves during the last cycle of testing in flexion/extension (FE) contd.
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Figure 22: Flexibility curves during the last cycle of testing in axial rotation (AR).
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Figure 35: Flexibility curves during the last cycle of testing in axial rotation (AR) contd.
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Appendix D: ROM Data

Table 3: ROM for each specimen in extension, without intervention. Absolute degree of angular
deformation (ROM), percent change between each post-challenge load and baseline ROM.

Specimen Baseline Post- Post- Post- Post-Challenge Post-Challenge Post-Challenge
P D (degrees) Challenge #1 ~ Challenge #2  Challenge #3 #1 vs. Baseline #2 vs. Baseline #3 vs. Baseline
9 (degrees) (degrees) (degrees) (% change) (% change) (% change)
Sheep 5
L2L3 3.66 191 1.00 1.70 -47.81 -72.68 -53.55
Sheep 6
L4L5 2.28 2.52 2.77 2.32 10.53 21.49 1.75
Sz 1.95 313 3.46 255 60.51 77.44 30.77
L2L3 ’ ' ’ ' ' ’ ’
Sheep 10
LoL3 1.17 1.96 1.07 0.95 67.52 -8.55 -18.80
Sheep 11
LaL5 1.57 1.33 1.24 111 -15.29 -21.02 -29.30
Mean 213 217 191 1.73 15.09 -0.66 -13.83
Std. Dev. 0.95 0.68 113 0.71 49.28 55.35 31.91

Table 4: ROM for each specimen in extension, with intervention. Absolute degree of angular
deformation (ROM), percent change between each post-challenge load and baseline ROM.

Specimen Baseline Post- Post- Post- Post-Challenge Post-Challenge Post-Challenge
P D (degrees) Challenge #1 ~ Challenge #2  Challenge #3 #1 vs. Baseline #2 vs. Baseline #3 vs. Baseline
(degrees) (degrees) (degrees) (% change) (% change) (% change)
Sheep 5
LALS 3.13 3.50 291 1.80 11.82 -7.03 -42.49
Sheep 8
LALS5 213 2.39 2.16 191 12.21 141 -10.33
Sheep 7
LALS 1.65 1.39 0.98 2.18 -15.76 -40.61 32.12
Sheep 9
L2L3 0.98 0.88 0.57 0.57 -10.20 -41.84 -41.84
Sheep 11
LoL3 2.55 1.34 1.90 1.75 -47.45 -25.49 -31.37
Mean 2.09 1.90 1.70 1.64 -9.88 -22.71 -18.78
Std. Dev. 0.82 1.05 0.94 0.62 24.52 19.50 31.28

81

www.manharaa.com




Table 5: ROM for each specimen in flexion, without intervention. Absolute degree of angular
deformation (ROM), percent change between each post-challenge load and baseline ROM.

N e

(degrees) (degrees) (degrees) (% change) (% change) (% change)
Stg‘i_p: 2.14 2.82 3.60 435 3178 68.22 103.27
Slr_‘if_%e 2.61 437 3.89 5.78 67.43 49.04 121.46
Stg‘i_p; 3.48 6.36 553 7.54 82.76 58.91 116.67
ST;E;O 217 2.66 2.48 233 2258 14.29 7.37
s'l‘_ejfsn 2.40 2.95 352 430 22,92 46.67 79.17
Mean 2.56 383 3.80 4.86 45.49 4743 85.59
Std. Dev. 0.55 157 1.10 1.94 27.81 2041 46.70

Table 6: ROM for each specimen in flexion, with intervention. Absolute degree of angular
deformation (ROM), percent change between each post-challenge load and baseline ROM.

Specimen Baseline Post- Post- Post- Post-Challenge Post-Challenge Post-Challenge
P D (degrees) Challenge #1 ~ Challenge #2  Challenge #3 #1 vs. Baseline #2 vs. Baseline #3 vs. Baseline
9 (degrees) (degrees) (degrees) (% change) (% change) (% change)
Sheep 5
LaL5 3.21 4.75 5.39 6.02 47.98 67.91 87.54
Sheep 8
LaL5 2.55 3.04 2.94 3.79 19.22 15.29 48.63
Sheep 7
LaL5 3.79 5.83 6.67 4.99 53.83 75.99 31.66
Sheep 9
L2L3 2.26 2.33 2.42 3.43 3.10 7.08 51.77
Sheep 11
LoL3 2.47 3.21 4.07 3.95 29.96 64.78 59.92
Mean 2.86 3.83 4.30 4.44 30.81 46.21 55.90
Std. Dev. 0.63 1.42 1.75 1.06 20.78 32.36 20.46
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Table 7: ROM for each specimen in axial rotation, without intervention. Absolute degree of
angular deformation (ROM), percent change between each post-challenge load and baseline ROM.

Specimen Baseline Post- Post- Post- Post-Challenge Post-Challenge Post-Challenge
P D (degrees) Challenge #1  Challenge #2  Challenge #3 #1 vs. Baseline #2 vs. Baseline #3 vs. Baseline
4 (degrees) (degrees) (degrees) (% change) (% change) (% change)
Sheep 5 }
L2L3 2.00 1.44 2.06 2.38 28.00 3.00 19.00
Sheep 6
LaLs 1.95 2.44 2.99 2.94 25.13 53.33 50.77
Sheep 7 : .
L2L3 2.94 2.46 3.67 2.93 16.33 24.83 0.34
Sheep 10
Lol3 2.58 2.02 3.50 3.48 -21.71 35.66 34.88
Sheep 11
LaL5 1.25 2.23 2.35 2.78 78.40 88.00 122.40
Mean 214 212 291 2.90 7.50 40.96 45.34
Std. Dev. 0.65 0.42 0.70 0.39 4477 32.00 47.06

Table 8: ROM for each specimen in axial rotation, with intervention. Absolute degree of angular
deformation (ROM), percent change between each post-challenge load and baseline ROM.

Specimen Baseline Post- Post- Post- Post-Challenge Post-Challenge Post-Challenge
P D (degrees) Challenge #1  Challenge #2  Challenge #3 #1 vs. Baseline #2 vs. Baseline #3 vs. Baseline
Y (degrees) (degrees) (degrees) (% change) (% change) (% change)
Sheep 5 .
LALS 2.85 3.10 3.12 2.58 8.77 9.47 9.47
Sheep 8
LaL5 0.69 2.27 2.94 4.05 228.99 326.09 486.96
Sheep 7 : : :
LALS 3.63 2.66 2.40 2.93 26.72 33.88 19.28
Sheep 9
L2L3 3.32 3.13 3.35 4.59 -5.72 0.90 38.25
Sheep 11
LoL3 1.96 2.15 2.84 2.70 9.69 44.90 37.76
Mean 2.49 2.66 2.93 3.37 43.00 69.50 106.84
Std. Dev. 1.19 0.45 0.35 0.90 105.01 146.15 214.13
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Appendix E: ROM Statistical Analysis

Table 9: ANOVA Statistical Results Comparing each Post-Challenge ROM with Baseline ROM
in Specimens without Intervention. P-values of mean post-challenge ROM compared to mean
baseline ROM within group of specimens without interventional extension, in each biomechanical
testing direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.94 0.75 0.47
Flexion 0.13 0.05 0.03
Axial Rotation 0.94 0.11 0.06

Table 10: ANOVA Statistical Results Comparing each Post-Challenge ROM with Baseline ROM
in Specimens with Intervention. P-values of mean post-challenge ROM compared to mean baseline
ROM within group of specimens with interventional extension, in each biomechanical testing
direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.76 0.51 0.36
Flexion 0.20 0.12 0.02
Axial Rotation 0.77 0.45 0.22

Table 11: ANOVA Statistical Results Comparing Specimens with and without Intervention. P-
values of percent change of post-challenge ROM compared to baseline ROM between group of
specimens without interventional extension movement and group of specimens with interventional
extension movement, in each biomechanical testing direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.34 0.43 0.81

Flexion 0.37 0.95 0.23

Axial Rotation 0.51 0.68 0.55
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Appendix F: NZ Stiffness Data

Table 12: NZ Stiffness for each specimen in extension, without intervention. Estimated stiffness,
percent change between each post-challenge load and baseline ROM.

Post- Post- Post-
Specimen Baseline Challjlgilt-e # Challjlgilt-e o Challz;gfmt—e 43 Challenge #1  Challenge#2  Challenge #3
ID (Nm/degree) (Nm/ degree) (Nm/ degree) (Nm/ degree) vs. Baseline vs. Baseline vs. Baseline
Y Y 4 (% change) (% change) (% change)
Sheep 5
L2L3 0.91 1.95 2.87 2.08 114.29 215.38 128.57
Sheep 6
LaLs 1.24 112 0.90 1.15 -9.68 -27.42 -7.26
Sheep 7
LoL3 1.24 0.81 0.72 1.15 -34.68 -41.94 -7.26
Sheep 10
Lol3 2.28 1.47 2.77 3.61 -35.53 21.49 58.33
Sheep 11
LaL5 191 2.07 2.28 2.52 8.38 19.37 31.94
Mean 1.52 1.48 191 2.10 8.56 37.38 40.87
Std. Dev. 0.56 0.54 1.03 1.03 61.89 103.38 56.37

Table 13: NZ Stiffness for each specimen in extension, with intervention. Estimated stiffness,
percent change between each post-challenge load and baseline ROM.

Post- Post- Post-
Specimen Baseline post- post- Post- Challenge #1  Challenge#2  Challenge #3
ID (Nm/degree) Challenge #1 Challenge #2 Challenge #3 vs. Baseline vs. Baseline vs. Baseline
(Nm/degree) (Nm/degree) (Nm/degree) (% change) (% change) (% change)
Sheep 5 R
LALS 0.88 0.75 1.00 1.83 14.77 13.64 107.95
Sheep 8 R :
LALS 1.36 1.05 1.32 1.40 22.79 2.94 294
Sheep 7 §
LALS 1.80 2.64 3.60 1.09 46.67 100.00 39.44
Sheep 9
L2L3 2.73 3.28 4,15 4.48 20.15 52.01 64.10
Sheep 11
LoL3 1.13 2.37 1.47 1.79 109.73 30.09 58.41
Mean 1.58 2.02 231 212 27.80 38.56 38.79
Std. Dev. 0.73 1.08 1.45 1.35 53.62 39.91 57.48
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Table 14: NZ Stiffness for each specimen in flexion, without intervention. Estimated stiffhess,
percent change between each post-challenge load and baseline ROM.

) ) Post- Post- Post- post- post- Post-
P maegree  Crolbnoest  Cratngerz - Crallnge sy SRl Copaine s paseine
(% change) (% change) (% change)
Stg‘i_pss 164 0.98 0.86 0.65 4024 -47.56 6037
Slr_‘jf_%e 114 0.55 0.68 0.41 5175 4035 -64.04
Stg‘i_p; 0.89 0.37 0.45 0.31 5843 -49.44 -65.17
S'I‘_ezeﬁ,o,lo 1.19 121 1.15 1.20 1.68 336 0.84
ST:ESH 1.16 0.90 0.79 0.63 2241 -31.90 45,69
Mean 1.20 0.80 0.79 0.64 3423 3452 46,88
Std. Dev. 0.27 0.34 0.26 0.34 24.28 18.74 27.79

Table 15: NZ Stiffness for each specimen in flexion, with intervention. Estimated stiffness, percent
change between each post-challenge load and baseline ROM.

Specimen Baseline post- post- post- Chaﬁgitt‘;e #1 Chaﬁg?\;e #2 Chaﬁgz’;e #3

ID (Nm/degree) ?ﬁg}g;‘gﬁeﬁ} ?ﬁrﬂ/lzgg?eg %ﬁﬂ;gzgﬁeg vs. Baseline vs. Baseline vs. Baseline

(% change) (% change) (% change)
Stjf_pss 0.77 0.58 0.50 0.43 -24.68 -35.06 -44.16
Stif_pss 0.97 0.78 0.82 0.65 11959 -15.46 -32.99
Stjf_p; 0.65 0.42 0.36 0.49 -35.38 4462 2462
Stgf_psg 112 1.22 0.95 0.62 8.93 -15.18 -44.64
S'I‘_ezeﬁsll 112 0.74 0.76 0.71 -33.93 -32.14 -36.61
Mean 0.93 0.75 0.68 0.58 2093 -28.49 -36.60

Std. Dev. 0.21 0.30 0.24 0.12 17.93 12.88 8.34
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Table 16: NZ Stiffness for each specimen in axial rotation, without intervention. Estimated
stiffness, percent change between each post-challenge load and baseline ROM.

Post- Post- Post-

e Sl Crallens  Cullgen  Crllgen SRS g Chaling o
(Nm/degree) (Nm/degree) (Nm/degree) (% change) (% change) (% change)

Stezelf’: 0.03 0.04 0.06 0.05 33.33 100.00 66.67
SI’_‘ieLPSG 0.05 0.03 0.04 0.09 -40.00 -20.00 80.00
S 0.05 0.08 0.05 0.04 60.00 0.00 -20.00
Srl‘_e;’jslo 0.04 0.01 0.03 0.04 -75.00 -25.00 0.00
S*I‘_ejﬁsll 0.3 0.03 0.07 0.17 76.92 46.15 30.77
Mean 0.06 0.04 0.05 0.08 -19.72 177 31.49
Std. Dev. 0.04 0.03 0.02 0.06 63.07 57.31 4253

Table 17: NZ Stiffness for each specimen in axial rotation, with intervention. Estimated stiffness,
percent change between each post-challenge load and baseline ROM.

) ) Post- Post- Post- Post- Post- Post-
Specimen Baseline Challenge #1 Challenge #2 Challenge #3 Challengg #1 Challengg #2 Challengg #3
ID (Nm/degree) vs. Baseline vs. Baseline vs. Baseline
(Nm/degree) (Nm/degree) (Nm/degree) (% change) (% change) (% change)
Sheep 5
LaL5 0.05 0.08 0.06 0.05 -89.61 -92.21 -93.51
Sheep 8
LaL5 0.02 0.05 0.06 0.03 -94.85 -93.81 -96.91
Sheep 7
LaL5 0.14 0.04 0.04 0.05 -93.85 -93.85 -92.31
Sheep 9
LoL3 0.03 0.12 0.06 0.04 -89.29 -94.64 -96.43
Sheep 11
LoL3 0.07 0.09 0.07 0.05 -91.96 -93.75 -95.54
Mean 0.06 0.08 0.06 0.04 -91.91 -93.65 -94.94
Std. Dev. 0.05 0.03 0.01 0.01 2.48 0.89 1.96
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Appendix G: NZ Stiffness Statistical Analysis

Table 18: ANOVA Statistical Results Comparing each Post-Challenge NZ Stiffness with Baseline
NZ Stiffness in Specimens without Intervention. P-values of mean post-challenge NZ stiffness
compared to mean baseline NZ stiffness within group of specimens without interventional extension,
in each biomechanical testing direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.93 0.48 0.30
Flexion 0.07 0.04 0.02
Axial Rotation 0.33 0.62 0.57

Table 19: ANOVA Statistical Results Comparing each Post-Challenge NZ Stiffness with Baseline
NZ Stiffness in Specimens with Intervention. P-values of mean post-challenge NZ stiffness
compared to mean baseline NZ stiffness within group of specimens with interventional extension, in
each biomechanical testing direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.47 0.36 0.46
Flexion 0.31 0.12 0.01
Axial Rotation 0.60 0.86 0.43

Table 20: ANOVA Statistical Results Comparing Specimens with and without Intervention. P-
values of percent change of post-challenge NZ stiffness compared to baseline NZ stiffness between
group of specimens without interventional extension movement and group of specimens with
interventional extension movement, in each biomechanical testing direction.

Testing Direction Post-Challenge #1  Post-Challenge #2  Post-Challenge #3

Extension 0.61 0.98 0.96

Flexion 0.35 0.57 0.45

Axial Rotation 0.03 0.01 0.001
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Appendix H: Copyright Clearance

The following documentation includes all license agreements between myself and
publishers to reproduce figures from previously-published textbooks and/or journal

articles, obtained through the Copyright Clearance Center:
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WILEY OPEN ACCESS TERMS AND CONDITIONS
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journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
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The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library

http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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reproduce this material for this purpose, and for no other use, subject to the conditions
herein
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include: the author(s), title of article, title of journal, velume number, issue number and
inclusive pages.
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the translation from the published English original and are not liable for any errors
which may occur.
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which may be considered derogatory to the title, content, or authors of the material, or to
Wolters Kluwer

. Indemnity: You hereby indemnify and hold harmless Wolters Kluwer and their respective

officers, directors, employees and agents, from and against any and all claims, costs,
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. Wolters Kluwer cannot supply the requestor with the original artwork or a “clean copy.”
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text article is strictly forbidden.

14. Please note that articles in the ahead-of-print stage of publication can be cited and the
content may be re-used by including the date of access and the unigue DOI number. Any
final changes in manuscripts will be made at the time of print publication and will be reflected
in the final electronic issue. Disclaimer: Articles appearing in the Published Ahead-of-Print
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derivative works. Once the 12- month term has expired, permission to renew must be
submitted in writing.

i. For content reused in another journal or book, in print or electronic format, the

license is one-time use and lasts for the 1st edition of a book or for the life of the
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on a timely basis, then any license preliminarily granted shall be deemed automatically
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take any and all action to protect its copyright in the materials.
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does not involve the separate exploitation of the permitted illustrations or excerpts.

Please click here to view the STM guidelines.
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13. Altering or modifying material: Please note that modification of text within figures or full-
text article is strictly forbidden.

14. Please note that articles in the ahead-of-print stage of publication can be cited and the
content may be re-used by including the date of access and the unigue DOI number. Any
final changes in manuscripts will be made at the time of print publication and will be reflected
in the final electronic issue. Disclaimer: Articles appearing in the Published Ahead-of-Print
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on a timely basis, then any license preliminarily granted shall be deemed automatically
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license is automatically revoked and shall be void as if never granted. Use of materials as
described in a revoked license, as well as any use of the materials beyond the scope of an
unrevoked license, may constitute copyright infringement and publisher reserves the right to
take any and all action to protect its copyright in the materials.
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reproductions, editions, revisions, or other derivative works.

Service Description for Content Services
Subject to these terms of use, any terms set forth on the particular order, and payment of the
applicable fee, you may make the following uses of the ordered materials:

+ Content Rental: You may access and view a single electronic copy of the materials ordered
for the time period designated at the time the order is placed. Access to the materials will be
provided through a dedicated content viewer or other portal, and access will be discontinued
upon expiration of the designated time period. An order for Content Rental does not include
any rights to print, download, save, create additional copies, to distribute or to reuse in any
way the full text or parts of the materials.

» Content Purchase: You may access and download a single electronic copy of the materials
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